Spaces:
Running
on
Zero
Running
on
Zero
mrfakename
commited on
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- src/f5_tts/model/trainer.py +10 -4
src/f5_tts/model/trainer.py
CHANGED
@@ -61,7 +61,7 @@ class Trainer:
|
|
61 |
gradient_accumulation_steps=grad_accumulation_steps,
|
62 |
**accelerate_kwargs,
|
63 |
)
|
64 |
-
|
65 |
self.logger = logger
|
66 |
if self.logger == "wandb":
|
67 |
if exists(wandb_resume_id):
|
@@ -325,7 +325,9 @@ class Trainer:
|
|
325 |
|
326 |
if self.log_samples and self.accelerator.is_local_main_process:
|
327 |
ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
|
328 |
-
torchaudio.save(
|
|
|
|
|
329 |
with torch.inference_mode():
|
330 |
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
331 |
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
@@ -336,8 +338,12 @@ class Trainer:
|
|
336 |
sway_sampling_coef=sway_sampling_coef,
|
337 |
)
|
338 |
generated = generated.to(torch.float32)
|
339 |
-
gen_audio = vocoder.decode(
|
340 |
-
|
|
|
|
|
|
|
|
|
341 |
|
342 |
if global_step % self.last_per_steps == 0:
|
343 |
self.save_checkpoint(global_step, last=True)
|
|
|
61 |
gradient_accumulation_steps=grad_accumulation_steps,
|
62 |
**accelerate_kwargs,
|
63 |
)
|
64 |
+
|
65 |
self.logger = logger
|
66 |
if self.logger == "wandb":
|
67 |
if exists(wandb_resume_id):
|
|
|
325 |
|
326 |
if self.log_samples and self.accelerator.is_local_main_process:
|
327 |
ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
|
328 |
+
torchaudio.save(
|
329 |
+
f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio.cpu(), target_sample_rate
|
330 |
+
)
|
331 |
with torch.inference_mode():
|
332 |
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
333 |
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
|
|
338 |
sway_sampling_coef=sway_sampling_coef,
|
339 |
)
|
340 |
generated = generated.to(torch.float32)
|
341 |
+
gen_audio = vocoder.decode(
|
342 |
+
generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
|
343 |
+
)
|
344 |
+
torchaudio.save(
|
345 |
+
f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio.cpu(), target_sample_rate
|
346 |
+
)
|
347 |
|
348 |
if global_step % self.last_per_steps == 0:
|
349 |
self.save_checkpoint(global_step, last=True)
|