# Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation) import argparse import json import os import sys sys.path.append(os.getcwd()) import multiprocessing as mp from importlib.resources import files import numpy as np from f5_tts.eval.utils_eval import ( get_librispeech_test, run_asr_wer, run_sim, ) rel_path = str(files("f5_tts").joinpath("../../")) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"]) parser.add_argument("-l", "--lang", type=str, default="en") parser.add_argument("-g", "--gen_wav_dir", type=str, required=True) parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True) parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use") parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory") return parser.parse_args() def main(): args = get_args() eval_task = args.eval_task lang = args.lang librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path gen_wav_dir = args.gen_wav_dir metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst" gpus = list(range(args.gpu_nums)) test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path) ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book, ## leading to a low similarity for the ground truth in some cases. # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth local = args.local if local: # use local custom checkpoint dir asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" else: asr_ckpt_dir = "" # auto download to cache dir wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" # --------------------------- WER --------------------------- if eval_task == "wer": wer_results = [] wers = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_asr_wer, args) for r in results: wer_results.extend(r) wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl" with open(wer_result_path, "w") as f: for line in wer_results: wers.append(line["wer"]) json_line = json.dumps(line, ensure_ascii=False) f.write(json_line + "\n") wer = round(np.mean(wers) * 100, 3) print(f"\nTotal {len(wers)} samples") print(f"WER : {wer}%") print(f"Results have been saved to {wer_result_path}") # --------------------------- SIM --------------------------- if eval_task == "sim": sims = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_sim, args) for r in results: sims.extend(r) sim = round(sum(sims) / len(sims), 3) print(f"\nTotal {len(sims)} samples") print(f"SIM : {sim}") if __name__ == "__main__": main()