import argparse import os import shutil from cached_path import cached_path from f5_tts.model import CFM, UNetT, DiT, Trainer from f5_tts.model.utils import get_tokenizer from f5_tts.model.dataset import load_dataset from importlib.resources import files # -------------------------- Dataset Settings --------------------------- # target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 win_length = 1024 n_fft = 1024 mel_spec_type = "vocos" # 'vocos' or 'bigvgan' # -------------------------- Argument Parsing --------------------------- # def parse_args(): # batch_size_per_gpu = 1000 settting for gpu 8GB # batch_size_per_gpu = 1600 settting for gpu 12GB # batch_size_per_gpu = 2000 settting for gpu 16GB # batch_size_per_gpu = 3200 settting for gpu 24GB # num_warmup_updates = 300 for 5000 sample about 10 hours # change save_per_updates , last_per_steps change this value what you need , parser = argparse.ArgumentParser(description="Train CFM Model") parser.add_argument( "--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name" ) parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use") parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training") parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU") parser.add_argument( "--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type" ) parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch") parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps") parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping") parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs") parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup steps") parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps") parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps") parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune") parser.add_argument("--pretrain", type=str, default=None, help="the path to the checkpoint") parser.add_argument( "--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type" ) parser.add_argument( "--tokenizer_path", type=str, default=None, help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')", ) parser.add_argument( "--log_samples", type=bool, default=False, help="Log inferenced samples per ckpt save steps", ) parser.add_argument("--logger", type=str, default=None, choices=["wandb", "tensorboard"], help="logger") parser.add_argument( "--bnb_optimizer", type=bool, default=False, help="Use 8-bit Adam optimizer from bitsandbytes", ) return parser.parse_args() # -------------------------- Training Settings -------------------------- # def main(): args = parse_args() checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}")) # Model parameters based on experiment name if args.exp_name == "F5TTS_Base": wandb_resume_id = None model_cls = DiT model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) if args.finetune: if args.pretrain is None: ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt")) else: ckpt_path = args.pretrain elif args.exp_name == "E2TTS_Base": wandb_resume_id = None model_cls = UNetT model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) if args.finetune: if args.pretrain is None: ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt")) else: ckpt_path = args.pretrain if args.finetune: if not os.path.isdir(checkpoint_path): os.makedirs(checkpoint_path, exist_ok=True) file_checkpoint = os.path.join(checkpoint_path, os.path.basename(ckpt_path)) if not os.path.isfile(file_checkpoint): shutil.copy2(ckpt_path, file_checkpoint) print("copy checkpoint for finetune") # Use the tokenizer and tokenizer_path provided in the command line arguments tokenizer = args.tokenizer if tokenizer == "custom": if not args.tokenizer_path: raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.") tokenizer_path = args.tokenizer_path else: tokenizer_path = args.dataset_name vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) print("\nvocab : ", vocab_size) print("\nvocoder : ", mel_spec_type) mel_spec_kwargs = dict( n_fft=n_fft, hop_length=hop_length, win_length=win_length, n_mel_channels=n_mel_channels, target_sample_rate=target_sample_rate, mel_spec_type=mel_spec_type, ) model = CFM( transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), mel_spec_kwargs=mel_spec_kwargs, vocab_char_map=vocab_char_map, ) trainer = Trainer( model, args.epochs, args.learning_rate, num_warmup_updates=args.num_warmup_updates, save_per_updates=args.save_per_updates, checkpoint_path=checkpoint_path, batch_size=args.batch_size_per_gpu, batch_size_type=args.batch_size_type, max_samples=args.max_samples, grad_accumulation_steps=args.grad_accumulation_steps, max_grad_norm=args.max_grad_norm, logger=args.logger, wandb_project=args.dataset_name, wandb_run_name=args.exp_name, wandb_resume_id=wandb_resume_id, log_samples=args.log_samples, last_per_steps=args.last_per_steps, bnb_optimizer=args.bnb_optimizer, ) train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) trainer.train( train_dataset, resumable_with_seed=666, # seed for shuffling dataset ) if __name__ == "__main__": main()