hydra: run: dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S} datasets: name: Emilia_ZH_EN batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200 batch_size_type: frame # "frame" or "sample" max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models num_workers: 16 optim: epochs: 15 learning_rate: 7.5e-5 num_warmup_updates: 20000 # warmup steps grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps max_grad_norm: 1.0 # gradient clipping bnb_optimizer: False # use bnb 8bit AdamW optimizer or not model: name: F5TTS_Small tokenizer: pinyin tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) arch: dim: 768 depth: 18 heads: 12 ff_mult: 2 text_dim: 512 conv_layers: 4 checkpoint_activations: False # recompute activations and save memory for extra compute mel_spec: target_sample_rate: 24000 n_mel_channels: 100 hop_length: 256 win_length: 1024 n_fft: 1024 mel_spec_type: vocos # 'vocos' or 'bigvgan' vocoder: is_local: False # use local offline ckpt or not local_path: None # local vocoder path ckpts: logger: wandb # wandb | tensorboard | None save_per_updates: 50000 # save checkpoint per steps last_per_steps: 5000 # save last checkpoint per steps save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}