# Evaluate with Seed-TTS testset import sys import os import argparse sys.path.append(os.getcwd()) import multiprocessing as mp from importlib.resources import files import numpy as np from f5_tts.eval.utils_eval import ( get_seed_tts_test, run_asr_wer, run_sim, ) rel_path = str(files("f5_tts").joinpath("../../")) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"]) parser.add_argument("-l", "--lang", type=str, default="en", choices=["zh", "en"]) parser.add_argument("-g", "--gen_wav_dir", type=str, required=True) parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use") parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory") return parser.parse_args() def main(): args = get_args() eval_task = args.eval_task lang = args.lang gen_wav_dir = args.gen_wav_dir metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset # NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different # zh 1.254 seems a result of 4 workers wer_seed_tts gpus = list(range(args.gpu_nums)) test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus) local = args.local if local: # use local custom checkpoint dir if lang == "zh": asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr elif lang == "en": asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" else: asr_ckpt_dir = "" # auto download to cache dir wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" # --------------------------- WER --------------------------- if eval_task == "wer": wers = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_asr_wer, args) for wers_ in results: wers.extend(wers_) wer = round(np.mean(wers) * 100, 3) print(f"\nTotal {len(wers)} samples") print(f"WER : {wer}%") # --------------------------- SIM --------------------------- if eval_task == "sim": sim_list = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_sim, args) for sim_ in results: sim_list.extend(sim_) sim = round(sum(sim_list) / len(sim_list), 3) print(f"\nTotal {len(sim_list)} samples") print(f"SIM : {sim}") if __name__ == "__main__": main()