import pickle import os import re from . import symbols from .es_phonemizer import cleaner as es_cleaner from .es_phonemizer import es_to_ipa from transformers import AutoTokenizer def distribute_phone(n_phone, n_word): phones_per_word = [0] * n_word for task in range(n_phone): min_tasks = min(phones_per_word) min_index = phones_per_word.index(min_tasks) phones_per_word[min_index] += 1 return phones_per_word def text_normalize(text): text = es_cleaner.spanish_cleaners(text) return text def post_replace_ph(ph): rep_map = { ":": ",", ";": ",", ",": ",", "。": ".", "!": "!", "?": "?", "\n": ".", "·": ",", "、": ",", "...": "…" } if ph in rep_map.keys(): ph = rep_map[ph] if ph in symbols: return ph if ph not in symbols: ph = "UNK" return ph def refine_ph(phn): tone = 0 if re.search(r"\d$", phn): tone = int(phn[-1]) + 1 phn = phn[:-1] return phn.lower(), tone def refine_syllables(syllables): tones = [] phonemes = [] for phn_list in syllables: for i in range(len(phn_list)): phn = phn_list[i] phn, tone = refine_ph(phn) phonemes.append(phn) tones.append(tone) return phonemes, tones # model_id = 'bert-base-uncased' model_id = 'dccuchile/bert-base-spanish-wwm-uncased' tokenizer = AutoTokenizer.from_pretrained(model_id) def g2p(text, pad_start_end=True, tokenized=None): if tokenized is None: tokenized = tokenizer.tokenize(text) # import pdb; pdb.set_trace() phs = [] ph_groups = [] for t in tokenized: if not t.startswith("#"): ph_groups.append([t]) else: ph_groups[-1].append(t.replace("#", "")) phones = [] tones = [] word2ph = [] # print(ph_groups) for group in ph_groups: w = "".join(group) phone_len = 0 word_len = len(group) if w == '[UNK]': phone_list = ['UNK'] else: phone_list = list(filter(lambda p: p != " ", es_to_ipa.es2ipa(w))) for ph in phone_list: phones.append(ph) tones.append(0) phone_len += 1 aaa = distribute_phone(phone_len, word_len) word2ph += aaa # print(phone_list, aaa) # print('=' * 10) if pad_start_end: phones = ["_"] + phones + ["_"] tones = [0] + tones + [0] word2ph = [1] + word2ph + [1] return phones, tones, word2ph def get_bert_feature(text, word2ph, device=None): from text import spanish_bert return spanish_bert.get_bert_feature(text, word2ph, device=device) if __name__ == "__main__": text = "en nuestros tiempos estos dos pueblos ilustres empiezan a curarse, gracias sólo a la sana y vigorosa higiene de 1789." # print(text) text = text_normalize(text) print(text) phones, tones, word2ph = g2p(text) bert = get_bert_feature(text, word2ph) print(phones) print(len(phones), tones, sum(word2ph), bert.shape)