Spaces:
Runtime error
Runtime error
Upload 43 files
Browse files- .gitattributes +15 -1
- LICENSE +201 -0
- cli/SparkTTS.py +236 -0
- cli/inference.py +104 -0
- example/infer.sh +47 -0
- example/prompt_audio.wav +3 -0
- example/results/20250225113521.wav +3 -0
- requirements.txt +13 -0
- sparktts/models/audio_tokenizer.py +163 -0
- sparktts/models/bicodec.py +247 -0
- sparktts/modules/blocks/layers.py +73 -0
- sparktts/modules/blocks/samper.py +115 -0
- sparktts/modules/blocks/vocos.py +373 -0
- sparktts/modules/encoder_decoder/feat_decoder.py +115 -0
- sparktts/modules/encoder_decoder/feat_encoder.py +105 -0
- sparktts/modules/encoder_decoder/wave_generator.py +88 -0
- sparktts/modules/fsq/finite_scalar_quantization.py +251 -0
- sparktts/modules/fsq/residual_fsq.py +355 -0
- sparktts/modules/speaker/ecapa_tdnn.py +267 -0
- sparktts/modules/speaker/perceiver_encoder.py +360 -0
- sparktts/modules/speaker/pooling_layers.py +298 -0
- sparktts/modules/speaker/speaker_encoder.py +136 -0
- sparktts/modules/vq/factorized_vector_quantize.py +187 -0
- sparktts/utils/__init__.py +0 -0
- sparktts/utils/audio.py +271 -0
- sparktts/utils/file.py +221 -0
- sparktts/utils/parse_options.sh +97 -0
- sparktts/utils/token_parser.py +187 -0
- src/demos/trump/trump_en.wav +3 -0
- src/demos/zhongli/zhongli_en.wav +3 -0
- src/demos/余承东/yuchengdong_zh.wav +3 -0
- src/demos/刘德华/dehua_zh.wav +3 -0
- src/demos/哪吒/nezha_zh.wav +3 -0
- src/demos/徐志胜/zhisheng_zh.wav +3 -0
- src/demos/李靖/lijing_zh.wav +3 -0
- src/demos/杨澜/yanglan_zh.wav +3 -0
- src/demos/马云/mayun_zh.wav +3 -0
- src/demos/鲁豫/luyu_zh.wav +3 -0
- src/figures/gradio_TTS.png +0 -0
- src/figures/gradio_control.png +0 -0
- src/figures/infer_control.png +3 -0
- src/figures/infer_voice_cloning.png +3 -0
- src/logo.webp +3 -0
- webui.py +192 -0
.gitattributes
CHANGED
@@ -32,4 +32,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -textexample/prompt_audio.wav filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example/results/20250225113521.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
src/demos/trump/trump_en.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
src/demos/zhongli/zhongli_en.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
src/demos/余承东/yuchengdong_zh.wav filter=lfs diff=lfs merge=lfs -text
|
40 |
+
src/demos/刘德华/dehua_zh.wav filter=lfs diff=lfs merge=lfs -text
|
41 |
+
src/demos/哪吒/nezha_zh.wav filter=lfs diff=lfs merge=lfs -text
|
42 |
+
src/demos/徐志胜/zhisheng_zh.wav filter=lfs diff=lfs merge=lfs -text
|
43 |
+
src/demos/李靖/lijing_zh.wav filter=lfs diff=lfs merge=lfs -text
|
44 |
+
src/demos/杨澜/yanglan_zh.wav filter=lfs diff=lfs merge=lfs -text
|
45 |
+
src/demos/马云/mayun_zh.wav filter=lfs diff=lfs merge=lfs -text
|
46 |
+
src/demos/鲁豫/luyu_zh.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
src/figures/infer_control.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
src/figures/infer_voice_cloning.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
src/logo.webp filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
cli/SparkTTS.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import re
|
17 |
+
import torch
|
18 |
+
from typing import Tuple
|
19 |
+
from pathlib import Path
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
21 |
+
|
22 |
+
from sparktts.utils.file import load_config
|
23 |
+
from sparktts.models.audio_tokenizer import BiCodecTokenizer
|
24 |
+
from sparktts.utils.token_parser import LEVELS_MAP, GENDER_MAP, TASK_TOKEN_MAP
|
25 |
+
|
26 |
+
|
27 |
+
class SparkTTS:
|
28 |
+
"""
|
29 |
+
Spark-TTS for text-to-speech generation.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, model_dir: Path, device: torch.device = torch.device("cuda:0")):
|
33 |
+
"""
|
34 |
+
Initializes the SparkTTS model with the provided configurations and device.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
model_dir (Path): Directory containing the model and config files.
|
38 |
+
device (torch.device): The device (CPU/GPU) to run the model on.
|
39 |
+
"""
|
40 |
+
self.device = device
|
41 |
+
self.model_dir = model_dir
|
42 |
+
self.configs = load_config(f"{model_dir}/config.yaml")
|
43 |
+
self.sample_rate = self.configs["sample_rate"]
|
44 |
+
self._initialize_inference()
|
45 |
+
|
46 |
+
def _initialize_inference(self):
|
47 |
+
"""Initializes the tokenizer, model, and audio tokenizer for inference."""
|
48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(f"{self.model_dir}/LLM")
|
49 |
+
self.model = AutoModelForCausalLM.from_pretrained(f"{self.model_dir}/LLM")
|
50 |
+
self.audio_tokenizer = BiCodecTokenizer(self.model_dir, device=self.device)
|
51 |
+
self.model.to(self.device)
|
52 |
+
|
53 |
+
def process_prompt(
|
54 |
+
self,
|
55 |
+
text: str,
|
56 |
+
prompt_speech_path: Path,
|
57 |
+
prompt_text: str = None,
|
58 |
+
) -> Tuple[str, torch.Tensor]:
|
59 |
+
"""
|
60 |
+
Process input for voice cloning.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
text (str): The text input to be converted to speech.
|
64 |
+
prompt_speech_path (Path): Path to the audio file used as a prompt.
|
65 |
+
prompt_text (str, optional): Transcript of the prompt audio.
|
66 |
+
|
67 |
+
Return:
|
68 |
+
Tuple[str, torch.Tensor]: Input prompt; global tokens
|
69 |
+
"""
|
70 |
+
|
71 |
+
global_token_ids, semantic_token_ids = self.audio_tokenizer.tokenize(
|
72 |
+
prompt_speech_path
|
73 |
+
)
|
74 |
+
global_tokens = "".join(
|
75 |
+
[f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()]
|
76 |
+
)
|
77 |
+
|
78 |
+
# Prepare the input tokens for the model
|
79 |
+
if prompt_text is not None:
|
80 |
+
semantic_tokens = "".join(
|
81 |
+
[f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()]
|
82 |
+
)
|
83 |
+
inputs = [
|
84 |
+
TASK_TOKEN_MAP["tts"],
|
85 |
+
"<|start_content|>",
|
86 |
+
prompt_text,
|
87 |
+
text,
|
88 |
+
"<|end_content|>",
|
89 |
+
"<|start_global_token|>",
|
90 |
+
global_tokens,
|
91 |
+
"<|end_global_token|>",
|
92 |
+
"<|start_semantic_token|>",
|
93 |
+
semantic_tokens,
|
94 |
+
]
|
95 |
+
else:
|
96 |
+
inputs = [
|
97 |
+
TASK_TOKEN_MAP["tts"],
|
98 |
+
"<|start_content|>",
|
99 |
+
text,
|
100 |
+
"<|end_content|>",
|
101 |
+
"<|start_global_token|>",
|
102 |
+
global_tokens,
|
103 |
+
"<|end_global_token|>",
|
104 |
+
]
|
105 |
+
|
106 |
+
inputs = "".join(inputs)
|
107 |
+
|
108 |
+
return inputs, global_token_ids
|
109 |
+
|
110 |
+
def process_prompt_control(
|
111 |
+
self,
|
112 |
+
gender: str,
|
113 |
+
pitch: str,
|
114 |
+
speed: str,
|
115 |
+
text: str,
|
116 |
+
):
|
117 |
+
"""
|
118 |
+
Process input for voice creation.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
gender (str): female | male.
|
122 |
+
pitch (str): very_low | low | moderate | high | very_high
|
123 |
+
speed (str): very_low | low | moderate | high | very_high
|
124 |
+
text (str): The text input to be converted to speech.
|
125 |
+
|
126 |
+
Return:
|
127 |
+
str: Input prompt
|
128 |
+
"""
|
129 |
+
assert gender in GENDER_MAP.keys()
|
130 |
+
assert pitch in LEVELS_MAP.keys()
|
131 |
+
assert speed in LEVELS_MAP.keys()
|
132 |
+
|
133 |
+
gender_id = GENDER_MAP[gender]
|
134 |
+
pitch_level_id = LEVELS_MAP[pitch]
|
135 |
+
speed_level_id = LEVELS_MAP[speed]
|
136 |
+
|
137 |
+
pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>"
|
138 |
+
speed_label_tokens = f"<|speed_label_{speed_level_id}|>"
|
139 |
+
gender_tokens = f"<|gender_{gender_id}|>"
|
140 |
+
|
141 |
+
attribte_tokens = "".join(
|
142 |
+
[gender_tokens, pitch_label_tokens, speed_label_tokens]
|
143 |
+
)
|
144 |
+
|
145 |
+
control_tts_inputs = [
|
146 |
+
TASK_TOKEN_MAP["controllable_tts"],
|
147 |
+
"<|start_content|>",
|
148 |
+
text,
|
149 |
+
"<|end_content|>",
|
150 |
+
"<|start_style_label|>",
|
151 |
+
attribte_tokens,
|
152 |
+
"<|end_style_label|>",
|
153 |
+
]
|
154 |
+
|
155 |
+
return "".join(control_tts_inputs)
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def inference(
|
159 |
+
self,
|
160 |
+
text: str,
|
161 |
+
prompt_speech_path: Path = None,
|
162 |
+
prompt_text: str = None,
|
163 |
+
gender: str = None,
|
164 |
+
pitch: str = None,
|
165 |
+
speed: str = None,
|
166 |
+
temperature: float = 0.8,
|
167 |
+
top_k: float = 50,
|
168 |
+
top_p: float = 0.95,
|
169 |
+
) -> torch.Tensor:
|
170 |
+
"""
|
171 |
+
Performs inference to generate speech from text, incorporating prompt audio and/or text.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
text (str): The text input to be converted to speech.
|
175 |
+
prompt_speech_path (Path): Path to the audio file used as a prompt.
|
176 |
+
prompt_text (str, optional): Transcript of the prompt audio.
|
177 |
+
gender (str): female | male.
|
178 |
+
pitch (str): very_low | low | moderate | high | very_high
|
179 |
+
speed (str): very_low | low | moderate | high | very_high
|
180 |
+
temperature (float, optional): Sampling temperature for controlling randomness. Default is 0.8.
|
181 |
+
top_k (float, optional): Top-k sampling parameter. Default is 50.
|
182 |
+
top_p (float, optional): Top-p (nucleus) sampling parameter. Default is 0.95.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
torch.Tensor: Generated waveform as a tensor.
|
186 |
+
"""
|
187 |
+
if gender is not None:
|
188 |
+
prompt = self.process_prompt_control(gender, pitch, speed, text)
|
189 |
+
|
190 |
+
else:
|
191 |
+
prompt, global_token_ids = self.process_prompt(
|
192 |
+
text, prompt_speech_path, prompt_text
|
193 |
+
)
|
194 |
+
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device)
|
195 |
+
|
196 |
+
# Generate speech using the model
|
197 |
+
generated_ids = self.model.generate(
|
198 |
+
**model_inputs,
|
199 |
+
max_new_tokens=3000,
|
200 |
+
do_sample=True,
|
201 |
+
top_k=top_k,
|
202 |
+
top_p=top_p,
|
203 |
+
temperature=temperature,
|
204 |
+
)
|
205 |
+
|
206 |
+
# Trim the output tokens to remove the input tokens
|
207 |
+
generated_ids = [
|
208 |
+
output_ids[len(input_ids) :]
|
209 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
210 |
+
]
|
211 |
+
|
212 |
+
# Decode the generated tokens into text
|
213 |
+
predicts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
214 |
+
|
215 |
+
# Extract semantic token IDs from the generated text
|
216 |
+
pred_semantic_ids = (
|
217 |
+
torch.tensor([int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicts)])
|
218 |
+
.long()
|
219 |
+
.unsqueeze(0)
|
220 |
+
)
|
221 |
+
|
222 |
+
if gender is not None:
|
223 |
+
global_token_ids = (
|
224 |
+
torch.tensor([int(token) for token in re.findall(r"bicodec_global_(\d+)", predicts)])
|
225 |
+
.long()
|
226 |
+
.unsqueeze(0)
|
227 |
+
.unsqueeze(0)
|
228 |
+
)
|
229 |
+
|
230 |
+
# Convert semantic tokens back to waveform
|
231 |
+
wav = self.audio_tokenizer.detokenize(
|
232 |
+
global_token_ids.to(self.device).squeeze(0),
|
233 |
+
pred_semantic_ids.to(self.device),
|
234 |
+
)
|
235 |
+
|
236 |
+
return wav
|
cli/inference.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import soundfile as sf
|
21 |
+
import logging
|
22 |
+
from datetime import datetime
|
23 |
+
|
24 |
+
from cli.SparkTTS import SparkTTS
|
25 |
+
|
26 |
+
|
27 |
+
def parse_args():
|
28 |
+
"""Parse command-line arguments."""
|
29 |
+
parser = argparse.ArgumentParser(description="Run TTS inference.")
|
30 |
+
|
31 |
+
parser.add_argument(
|
32 |
+
"--model_dir",
|
33 |
+
type=str,
|
34 |
+
default="pretrained_models/Spark-TTS-0.5B",
|
35 |
+
help="Path to the model directory",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--save_dir",
|
39 |
+
type=str,
|
40 |
+
default="example/results",
|
41 |
+
help="Directory to save generated audio files",
|
42 |
+
)
|
43 |
+
parser.add_argument("--device", type=int, default=0, help="CUDA device number")
|
44 |
+
parser.add_argument(
|
45 |
+
"--text", type=str, required=True, help="Text for TTS generation"
|
46 |
+
)
|
47 |
+
parser.add_argument("--prompt_text", type=str, help="Transcript of prompt audio")
|
48 |
+
parser.add_argument(
|
49 |
+
"--prompt_speech_path",
|
50 |
+
type=str,
|
51 |
+
help="Path to the prompt audio file",
|
52 |
+
)
|
53 |
+
parser.add_argument("--gender", choices=["male", "female"])
|
54 |
+
parser.add_argument(
|
55 |
+
"--pitch", choices=["very_low", "low", "moderate", "high", "very_high"]
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--speed", choices=["very_low", "low", "moderate", "high", "very_high"]
|
59 |
+
)
|
60 |
+
return parser.parse_args()
|
61 |
+
|
62 |
+
|
63 |
+
def run_tts(args):
|
64 |
+
"""Perform TTS inference and save the generated audio."""
|
65 |
+
logging.info(f"Using model from: {args.model_dir}")
|
66 |
+
logging.info(f"Saving audio to: {args.save_dir}")
|
67 |
+
|
68 |
+
# Ensure the save directory exists
|
69 |
+
os.makedirs(args.save_dir, exist_ok=True)
|
70 |
+
|
71 |
+
# Convert device argument to torch.device
|
72 |
+
device = torch.device(f"cuda:{args.device}")
|
73 |
+
|
74 |
+
# Initialize the model
|
75 |
+
model = SparkTTS(args.model_dir, device)
|
76 |
+
|
77 |
+
# Generate unique filename using timestamp
|
78 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
79 |
+
save_path = os.path.join(args.save_dir, f"{timestamp}.wav")
|
80 |
+
|
81 |
+
logging.info("Starting inference...")
|
82 |
+
|
83 |
+
# Perform inference and save the output audio
|
84 |
+
with torch.no_grad():
|
85 |
+
wav = model.inference(
|
86 |
+
args.text,
|
87 |
+
args.prompt_speech_path,
|
88 |
+
prompt_text=args.prompt_text,
|
89 |
+
gender=args.gender,
|
90 |
+
pitch=args.pitch,
|
91 |
+
speed=args.speed,
|
92 |
+
)
|
93 |
+
sf.write(save_path, wav, samplerate=16000)
|
94 |
+
|
95 |
+
logging.info(f"Audio saved at: {save_path}")
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
logging.basicConfig(
|
100 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
101 |
+
)
|
102 |
+
|
103 |
+
args = parse_args()
|
104 |
+
run_tts(args)
|
example/infer.sh
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Copyright (c) 2025 SparkAudio
|
4 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
|
19 |
+
# Get the absolute path of the script's directory
|
20 |
+
script_dir=$(dirname "$(realpath "$0")")
|
21 |
+
|
22 |
+
# Get the root directory
|
23 |
+
root_dir=$(dirname "$script_dir")
|
24 |
+
|
25 |
+
# Set default parameters
|
26 |
+
device=0
|
27 |
+
save_dir='example/results'
|
28 |
+
model_dir="pretrained_models/Spark-TTS-0.5B"
|
29 |
+
text="身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。"
|
30 |
+
prompt_text="吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。"
|
31 |
+
prompt_speech_path="example/prompt_audio.wav"
|
32 |
+
|
33 |
+
# Change directory to the root directory
|
34 |
+
cd "$root_dir" || exit
|
35 |
+
|
36 |
+
source sparktts/utils/parse_options.sh
|
37 |
+
|
38 |
+
# Run inference
|
39 |
+
python -m cli.inference \
|
40 |
+
--text "${text}" \
|
41 |
+
--device "${device}" \
|
42 |
+
--save_dir "${save_dir}" \
|
43 |
+
--model_dir "${model_dir}" \
|
44 |
+
--prompt_text "${prompt_text}" \
|
45 |
+
--prompt_speech_path "${prompt_speech_path}"
|
46 |
+
|
47 |
+
|
example/prompt_audio.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:335e7f7789b231cd90d9670292d561ecfe6a6bdd5e737a7bc6c29730741852de
|
3 |
+
size 318550
|
example/results/20250225113521.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d335b2fbd3dbab1897b4637fd2357a91879dc1ac27b1466c63b2728b3bfffa9
|
3 |
+
size 237484
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops==0.8.1
|
2 |
+
einx==0.3.0
|
3 |
+
numpy==2.2.3
|
4 |
+
omegaconf==2.3.0
|
5 |
+
packaging==24.2
|
6 |
+
safetensors==0.5.2
|
7 |
+
soundfile==0.12.1
|
8 |
+
soxr==0.5.0.post1
|
9 |
+
torch==2.5.1
|
10 |
+
torchaudio==2.5.1
|
11 |
+
tqdm==4.66.5
|
12 |
+
transformers==4.46.2
|
13 |
+
gradio==5.18.0
|
sparktts/models/audio_tokenizer.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Any, Dict, Tuple
|
22 |
+
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
|
23 |
+
|
24 |
+
from sparktts.utils.file import load_config
|
25 |
+
from sparktts.utils.audio import load_audio
|
26 |
+
from sparktts.models.bicodec import BiCodec
|
27 |
+
|
28 |
+
|
29 |
+
class BiCodecTokenizer:
|
30 |
+
"""BiCodec tokenizer for handling audio input and tokenization."""
|
31 |
+
|
32 |
+
def __init__(self, model_dir: Path, device: torch.device = None, **kwargs):
|
33 |
+
super().__init__()
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
model_dir: Path to the model directory.
|
37 |
+
device: Device to run the model on (default is GPU if available).
|
38 |
+
"""
|
39 |
+
self.device = device
|
40 |
+
self.model_dir = model_dir
|
41 |
+
self.config = load_config(f"{model_dir}/config.yaml")
|
42 |
+
self._initialize_model()
|
43 |
+
|
44 |
+
def _initialize_model(self):
|
45 |
+
"""Load and initialize the BiCodec model and Wav2Vec2 feature extractor."""
|
46 |
+
self.model = BiCodec.load_from_checkpoint(f"{self.model_dir}/BiCodec").to(
|
47 |
+
self.device
|
48 |
+
)
|
49 |
+
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(
|
50 |
+
f"{self.model_dir}/wav2vec2-large-xlsr-53"
|
51 |
+
)
|
52 |
+
self.feature_extractor = Wav2Vec2Model.from_pretrained(
|
53 |
+
f"{self.model_dir}/wav2vec2-large-xlsr-53"
|
54 |
+
).to(self.device)
|
55 |
+
self.feature_extractor.config.output_hidden_states = True
|
56 |
+
|
57 |
+
def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
|
58 |
+
"""Get reference audio clip for speaker embedding."""
|
59 |
+
ref_segment_length = (
|
60 |
+
int(self.config["sample_rate"] * self.config["ref_segment_duration"])
|
61 |
+
// self.config["latent_hop_length"]
|
62 |
+
* self.config["latent_hop_length"]
|
63 |
+
)
|
64 |
+
wav_length = len(wav)
|
65 |
+
|
66 |
+
if ref_segment_length > wav_length:
|
67 |
+
# Repeat and truncate to handle insufficient length
|
68 |
+
wav = np.tile(wav, (1 + ref_segment_length) // wav_length)
|
69 |
+
|
70 |
+
return wav[:ref_segment_length]
|
71 |
+
|
72 |
+
def process_audio(self, wav_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
|
73 |
+
"""load auido and get reference audio from wav path"""
|
74 |
+
wav = load_audio(
|
75 |
+
wav_path,
|
76 |
+
sampling_rate=self.config["sample_rate"],
|
77 |
+
volume_normalize=self.config["volume_normalize"],
|
78 |
+
)
|
79 |
+
|
80 |
+
wav_ref = self.get_ref_clip(wav)
|
81 |
+
|
82 |
+
wav_ref = torch.from_numpy(wav_ref).unsqueeze(0).float()
|
83 |
+
return wav, wav_ref
|
84 |
+
|
85 |
+
def extract_wav2vec2_features(self, wavs: torch.Tensor) -> torch.Tensor:
|
86 |
+
"""extract wav2vec2 features"""
|
87 |
+
inputs = self.processor(
|
88 |
+
wavs,
|
89 |
+
sampling_rate=16000,
|
90 |
+
return_tensors="pt",
|
91 |
+
padding=True,
|
92 |
+
output_hidden_states=True,
|
93 |
+
).input_values
|
94 |
+
feat = self.feature_extractor(inputs.to(self.feature_extractor.device))
|
95 |
+
feats_mix = (
|
96 |
+
feat.hidden_states[11] + feat.hidden_states[14] + feat.hidden_states[16]
|
97 |
+
) / 3
|
98 |
+
|
99 |
+
return feats_mix
|
100 |
+
|
101 |
+
def tokenize_batch(self, batch: Dict[str, Any]) -> torch.Tensor:
|
102 |
+
"""tokenize the batch of audio
|
103 |
+
|
104 |
+
Args:
|
105 |
+
batch:
|
106 |
+
wavs (List[np.ndarray]): batch of audio
|
107 |
+
ref_wavs (torch.Tensor): reference audio. shape: (batch_size, seq_len)
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
semantic_tokens: semantic tokens. shape: (batch_size, seq_len, latent_dim)
|
111 |
+
global_tokens: global tokens. shape: (batch_size, seq_len, global_dim)
|
112 |
+
"""
|
113 |
+
feats = self.extract_wav2vec2_features(batch["wav"])
|
114 |
+
batch["feat"] = feats
|
115 |
+
semantic_tokens, global_tokens = self.model.tokenize(batch)
|
116 |
+
|
117 |
+
return global_tokens, semantic_tokens
|
118 |
+
|
119 |
+
def tokenize(self, audio_path: str) -> Tuple[torch.Tensor, torch.Tensor]:
|
120 |
+
"""tokenize the audio"""
|
121 |
+
wav, ref_wav = self.process_audio(audio_path)
|
122 |
+
feat = self.extract_wav2vec2_features(wav)
|
123 |
+
batch = {
|
124 |
+
"wav": torch.from_numpy(wav).unsqueeze(0).float().to(self.device),
|
125 |
+
"ref_wav": ref_wav.to(self.device),
|
126 |
+
"feat": feat.to(self.device),
|
127 |
+
}
|
128 |
+
semantic_tokens, global_tokens = self.model.tokenize(batch)
|
129 |
+
|
130 |
+
return global_tokens, semantic_tokens
|
131 |
+
|
132 |
+
def detokenize(
|
133 |
+
self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor
|
134 |
+
) -> np.array:
|
135 |
+
"""detokenize the tokens to waveform
|
136 |
+
|
137 |
+
Args:
|
138 |
+
global_tokens: global tokens. shape: (batch_size, global_dim)
|
139 |
+
semantic_tokens: semantic tokens. shape: (batch_size, latent_dim)
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
wav_rec: waveform. shape: (batch_size, seq_len) for batch or (seq_len,) for single
|
143 |
+
"""
|
144 |
+
global_tokens = global_tokens.unsqueeze(1)
|
145 |
+
wav_rec = self.model.detokenize(semantic_tokens, global_tokens)
|
146 |
+
return wav_rec.detach().squeeze().cpu().numpy()
|
147 |
+
|
148 |
+
|
149 |
+
# test
|
150 |
+
if __name__ == "__main__":
|
151 |
+
import soundfile as sf
|
152 |
+
|
153 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
154 |
+
tokenizer = BiCodecTokenizer(
|
155 |
+
model_dir="pretrained_models/Spark-TTS-0.5B",
|
156 |
+
device=device,
|
157 |
+
)
|
158 |
+
wav_path = "example/prompt_audio.wav"
|
159 |
+
|
160 |
+
global_tokens, semantic_tokens = tokenizer.tokenize(wav_path)
|
161 |
+
|
162 |
+
wav_rec = tokenizer.detokenize(global_tokens.squeeze(0), semantic_tokens)
|
163 |
+
sf.write("example/prompt_recon.wav", wav_rec, 16000)
|
sparktts/models/bicodec.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, Any
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from safetensors.torch import load_file
|
22 |
+
|
23 |
+
from sparktts.utils.file import load_config
|
24 |
+
from sparktts.modules.speaker.speaker_encoder import SpeakerEncoder
|
25 |
+
from sparktts.modules.encoder_decoder.feat_encoder import Encoder
|
26 |
+
from sparktts.modules.encoder_decoder.feat_decoder import Decoder
|
27 |
+
from sparktts.modules.encoder_decoder.wave_generator import WaveGenerator
|
28 |
+
from sparktts.modules.vq.factorized_vector_quantize import FactorizedVectorQuantize
|
29 |
+
|
30 |
+
|
31 |
+
class BiCodec(nn.Module):
|
32 |
+
"""
|
33 |
+
BiCodec model for speech synthesis, incorporating a speaker encoder, feature encoder/decoder,
|
34 |
+
quantizer, and wave generator.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
mel_params: Dict[str, Any],
|
40 |
+
encoder: nn.Module,
|
41 |
+
decoder: nn.Module,
|
42 |
+
quantizer: nn.Module,
|
43 |
+
speaker_encoder: nn.Module,
|
44 |
+
prenet: nn.Module,
|
45 |
+
postnet: nn.Module,
|
46 |
+
**kwargs
|
47 |
+
) -> None:
|
48 |
+
"""
|
49 |
+
Initializes the BiCodec model with the required components.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
mel_params (dict): Parameters for the mel-spectrogram transformer.
|
53 |
+
encoder (nn.Module): Encoder module.
|
54 |
+
decoder (nn.Module): Decoder module.
|
55 |
+
quantizer (nn.Module): Quantizer module.
|
56 |
+
speaker_encoder (nn.Module): Speaker encoder module.
|
57 |
+
prenet (nn.Module): Prenet network.
|
58 |
+
postnet (nn.Module): Postnet network.
|
59 |
+
"""
|
60 |
+
super().__init__()
|
61 |
+
self.encoder = encoder
|
62 |
+
self.decoder = decoder
|
63 |
+
self.quantizer = quantizer
|
64 |
+
self.speaker_encoder = speaker_encoder
|
65 |
+
self.prenet = prenet
|
66 |
+
self.postnet = postnet
|
67 |
+
self.init_mel_transformer(mel_params)
|
68 |
+
|
69 |
+
@classmethod
|
70 |
+
def load_from_checkpoint(cls, model_dir: Path, **kwargs) -> "BiCodec":
|
71 |
+
"""
|
72 |
+
Loads the model from a checkpoint.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
model_dir (Path): Path to the model directory containing checkpoint and config.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
BiCodec: The initialized BiCodec model.
|
79 |
+
"""
|
80 |
+
ckpt_path = f'{model_dir}/model.safetensors'
|
81 |
+
config = load_config(f'{model_dir}/config.yaml')['audio_tokenizer']
|
82 |
+
mel_params = config["mel_params"]
|
83 |
+
encoder = Encoder(**config["encoder"])
|
84 |
+
quantizer = FactorizedVectorQuantize(**config["quantizer"])
|
85 |
+
prenet = Decoder(**config["prenet"])
|
86 |
+
postnet = Decoder(**config["postnet"])
|
87 |
+
decoder = WaveGenerator(**config["decoder"])
|
88 |
+
speaker_encoder = SpeakerEncoder(**config["speaker_encoder"])
|
89 |
+
|
90 |
+
model = cls(
|
91 |
+
mel_params=mel_params,
|
92 |
+
encoder=encoder,
|
93 |
+
decoder=decoder,
|
94 |
+
quantizer=quantizer,
|
95 |
+
speaker_encoder=speaker_encoder,
|
96 |
+
prenet=prenet,
|
97 |
+
postnet=postnet,
|
98 |
+
)
|
99 |
+
|
100 |
+
state_dict = load_file(ckpt_path)
|
101 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
102 |
+
|
103 |
+
for key in missing_keys:
|
104 |
+
print(f"Missing tensor: {key}")
|
105 |
+
for key in unexpected_keys:
|
106 |
+
print(f"Unexpected tensor: {key}")
|
107 |
+
|
108 |
+
model.eval()
|
109 |
+
model.remove_weight_norm()
|
110 |
+
|
111 |
+
return model
|
112 |
+
|
113 |
+
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
|
114 |
+
"""
|
115 |
+
Performs a forward pass through the model.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
batch (dict): A dictionary containing features, reference waveform, and target waveform.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
dict: A dictionary containing the reconstruction, features, and other metrics.
|
122 |
+
"""
|
123 |
+
feat = batch["feat"]
|
124 |
+
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
|
125 |
+
|
126 |
+
z = self.encoder(feat.transpose(1, 2))
|
127 |
+
vq_outputs = self.quantizer(z)
|
128 |
+
|
129 |
+
x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2))
|
130 |
+
|
131 |
+
conditions = d_vector
|
132 |
+
with_speaker_loss = False
|
133 |
+
|
134 |
+
x = self.prenet(vq_outputs["z_q"], conditions)
|
135 |
+
pred_feat = self.postnet(x)
|
136 |
+
x = x + conditions.unsqueeze(-1)
|
137 |
+
wav_recon = self.decoder(x)
|
138 |
+
|
139 |
+
return {
|
140 |
+
"vq_loss": vq_outputs["vq_loss"],
|
141 |
+
"perplexity": vq_outputs["perplexity"],
|
142 |
+
"cluster_size": vq_outputs["active_num"],
|
143 |
+
"recons": wav_recon,
|
144 |
+
"pred_feat": pred_feat,
|
145 |
+
"x_vector": x_vector,
|
146 |
+
"d_vector": d_vector,
|
147 |
+
"audios": batch["wav"].unsqueeze(1),
|
148 |
+
"with_speaker_loss": with_speaker_loss,
|
149 |
+
}
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def tokenize(self, batch: Dict[str, Any]):
|
153 |
+
"""
|
154 |
+
Tokenizes the input audio into semantic and global tokens.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
batch (dict): The input audio features and reference waveform.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
tuple: Semantic tokens and global tokens.
|
161 |
+
"""
|
162 |
+
feat = batch["feat"]
|
163 |
+
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
|
164 |
+
|
165 |
+
z = self.encoder(feat.transpose(1, 2))
|
166 |
+
semantic_tokens = self.quantizer.tokenize(z)
|
167 |
+
global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2))
|
168 |
+
|
169 |
+
return semantic_tokens, global_tokens
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def detokenize(self, semantic_tokens, global_tokens):
|
173 |
+
"""
|
174 |
+
Detokenizes the semantic and global tokens into a waveform.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
semantic_tokens (tensor): Semantic tokens.
|
178 |
+
global_tokens (tensor): Global tokens.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
tensor: Reconstructed waveform.
|
182 |
+
"""
|
183 |
+
z_q = self.quantizer.detokenize(semantic_tokens)
|
184 |
+
d_vector = self.speaker_encoder.detokenize(global_tokens)
|
185 |
+
x = self.prenet(z_q, d_vector)
|
186 |
+
x = x + d_vector.unsqueeze(-1)
|
187 |
+
wav_recon = self.decoder(x)
|
188 |
+
|
189 |
+
return wav_recon
|
190 |
+
|
191 |
+
def init_mel_transformer(self, config: Dict[str, Any]):
|
192 |
+
"""
|
193 |
+
Initializes the MelSpectrogram transformer based on the provided configuration.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
config (dict): Configuration parameters for MelSpectrogram.
|
197 |
+
"""
|
198 |
+
import torchaudio.transforms as TT
|
199 |
+
|
200 |
+
self.mel_transformer = TT.MelSpectrogram(
|
201 |
+
config["sample_rate"],
|
202 |
+
config["n_fft"],
|
203 |
+
config["win_length"],
|
204 |
+
config["hop_length"],
|
205 |
+
config["mel_fmin"],
|
206 |
+
config["mel_fmax"],
|
207 |
+
n_mels=config["num_mels"],
|
208 |
+
power=1,
|
209 |
+
norm="slaney",
|
210 |
+
mel_scale="slaney",
|
211 |
+
)
|
212 |
+
|
213 |
+
def remove_weight_norm(self):
|
214 |
+
"""Removes weight normalization from all layers."""
|
215 |
+
def _remove_weight_norm(m):
|
216 |
+
try:
|
217 |
+
torch.nn.utils.remove_weight_norm(m)
|
218 |
+
except ValueError:
|
219 |
+
pass # The module didn't have weight norm
|
220 |
+
|
221 |
+
self.apply(_remove_weight_norm)
|
222 |
+
|
223 |
+
|
224 |
+
# Test the model
|
225 |
+
if __name__ == "__main__":
|
226 |
+
|
227 |
+
config = load_config("pretrained_models/SparkTTS-0.5B/BiCodec/config.yaml")
|
228 |
+
model = BiCodec.load_from_checkpoint(
|
229 |
+
model_dir="pretrained_models/SparkTTS-0.5B/BiCodec",
|
230 |
+
)
|
231 |
+
|
232 |
+
# Generate random inputs for testing
|
233 |
+
duration = 0.96
|
234 |
+
x = torch.randn(20, 1, int(duration * 16000))
|
235 |
+
feat = torch.randn(20, int(duration * 50), 1024)
|
236 |
+
inputs = {"feat": feat, "wav": x, "ref_wav": x}
|
237 |
+
|
238 |
+
# Forward pass
|
239 |
+
outputs = model(inputs)
|
240 |
+
semantic_tokens, global_tokens = model.tokenize(inputs)
|
241 |
+
wav_recon = model.detokenize(semantic_tokens, global_tokens)
|
242 |
+
|
243 |
+
# Verify if the reconstruction matches
|
244 |
+
if torch.allclose(outputs["recons"].detach(), wav_recon):
|
245 |
+
print("Test successful")
|
246 |
+
else:
|
247 |
+
print("Test failed")
|
sparktts/modules/blocks/layers.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0
|
17 |
+
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn.utils import weight_norm
|
22 |
+
|
23 |
+
|
24 |
+
def WNConv1d(*args, **kwargs):
|
25 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
26 |
+
|
27 |
+
|
28 |
+
def WNConvTranspose1d(*args, **kwargs):
|
29 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
30 |
+
|
31 |
+
|
32 |
+
# Scripting this brings model speed up 1.4x
|
33 |
+
@torch.jit.script
|
34 |
+
def snake(x, alpha):
|
35 |
+
shape = x.shape
|
36 |
+
x = x.reshape(shape[0], shape[1], -1)
|
37 |
+
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
38 |
+
x = x.reshape(shape)
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
class Snake1d(nn.Module):
|
43 |
+
def __init__(self, channels):
|
44 |
+
super().__init__()
|
45 |
+
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
return snake(x, self.alpha)
|
49 |
+
|
50 |
+
|
51 |
+
class ResidualUnit(nn.Module):
|
52 |
+
def __init__(self, dim: int = 16, dilation: int = 1):
|
53 |
+
super().__init__()
|
54 |
+
pad = ((7 - 1) * dilation) // 2
|
55 |
+
self.block = nn.Sequential(
|
56 |
+
Snake1d(dim),
|
57 |
+
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
58 |
+
Snake1d(dim),
|
59 |
+
WNConv1d(dim, dim, kernel_size=1),
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
y = self.block(x)
|
64 |
+
pad = (x.shape[-1] - y.shape[-1]) // 2
|
65 |
+
if pad > 0:
|
66 |
+
x = x[..., pad:-pad]
|
67 |
+
return x + y
|
68 |
+
|
69 |
+
|
70 |
+
def init_weights(m):
|
71 |
+
if isinstance(m, nn.Conv1d):
|
72 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
73 |
+
nn.init.constant_(m.bias, 0)
|
sparktts/modules/blocks/samper.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
|
21 |
+
|
22 |
+
class SamplingBlock(nn.Module):
|
23 |
+
"""Sampling block for upsampling or downsampling"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
dim: int,
|
28 |
+
groups: int = 1,
|
29 |
+
upsample_scale: int = 1,
|
30 |
+
downsample_scale: int = 1,
|
31 |
+
) -> None:
|
32 |
+
"""
|
33 |
+
Args:
|
34 |
+
dim: input dimension
|
35 |
+
groups: number of groups
|
36 |
+
upsample_scale: upsampling scale
|
37 |
+
downsample_scale: downsampling scale
|
38 |
+
"""
|
39 |
+
super(SamplingBlock, self).__init__()
|
40 |
+
|
41 |
+
self.upsample_scale = upsample_scale
|
42 |
+
self.downsample_scale = downsample_scale
|
43 |
+
|
44 |
+
if self.upsample_scale > 1:
|
45 |
+
self.de_conv_upsampler = nn.Sequential(
|
46 |
+
nn.LeakyReLU(0.2),
|
47 |
+
nn.ConvTranspose1d(
|
48 |
+
dim,
|
49 |
+
dim,
|
50 |
+
kernel_size=upsample_scale * 2,
|
51 |
+
stride=upsample_scale,
|
52 |
+
padding=upsample_scale // 2 + upsample_scale % 2,
|
53 |
+
output_padding=upsample_scale % 2,
|
54 |
+
groups=groups,
|
55 |
+
),
|
56 |
+
)
|
57 |
+
|
58 |
+
if self.downsample_scale > 1:
|
59 |
+
self.conv_downsampler = nn.Sequential(
|
60 |
+
nn.LeakyReLU(0.2),
|
61 |
+
nn.Conv1d(
|
62 |
+
dim,
|
63 |
+
dim,
|
64 |
+
kernel_size=2 * downsample_scale,
|
65 |
+
stride=downsample_scale,
|
66 |
+
padding=downsample_scale // 2 + downsample_scale % 2,
|
67 |
+
groups=groups,
|
68 |
+
),
|
69 |
+
)
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def repeat_upsampler(x, upsample_scale):
|
73 |
+
return x.repeat_interleave(upsample_scale, dim=2)
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
def skip_downsampler(x, downsample_scale):
|
77 |
+
return F.avg_pool1d(x, kernel_size=downsample_scale, stride=downsample_scale)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = x.transpose(1, 2)
|
81 |
+
if self.upsample_scale > 1:
|
82 |
+
repeat_res = self.repeat_upsampler(x, self.upsample_scale)
|
83 |
+
deconv_res = self.de_conv_upsampler(x)
|
84 |
+
upmerge_res = repeat_res + deconv_res
|
85 |
+
else:
|
86 |
+
upmerge_res = x
|
87 |
+
repeat_res = x
|
88 |
+
|
89 |
+
if self.downsample_scale > 1:
|
90 |
+
conv_res = self.conv_downsampler(upmerge_res)
|
91 |
+
skip2_res = self.skip_downsampler(upmerge_res, self.downsample_scale)
|
92 |
+
skip1_res = self.skip_downsampler(repeat_res, self.downsample_scale)
|
93 |
+
else:
|
94 |
+
conv_res = upmerge_res
|
95 |
+
skip2_res = upmerge_res
|
96 |
+
skip1_res = repeat_res
|
97 |
+
|
98 |
+
final_res = conv_res + skip1_res + skip2_res
|
99 |
+
|
100 |
+
return final_res
|
101 |
+
|
102 |
+
|
103 |
+
# test
|
104 |
+
if __name__ == "__main__":
|
105 |
+
test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
|
106 |
+
model = SamplingBlock(1024, 1024, upsample_scale=2)
|
107 |
+
model_down = SamplingBlock(1024, 1024, downsample_scale=2)
|
108 |
+
output = model(test_input)
|
109 |
+
output_down = model_down(test_input)
|
110 |
+
print("shape after upsample * 2", output.shape) # torch.Size([8, 1024, 100])
|
111 |
+
print("shape after downsample * 2", output_down.shape) # torch.Size([8, 1024, 25])
|
112 |
+
if output.shape == torch.Size([8, 1024, 100]) and output_down.shape == torch.Size(
|
113 |
+
[8, 1024, 25]
|
114 |
+
):
|
115 |
+
print("test successful")
|
sparktts/modules/blocks/vocos.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from typing import Tuple
|
21 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
22 |
+
|
23 |
+
from typing import Optional
|
24 |
+
|
25 |
+
|
26 |
+
class ConvNeXtBlock(nn.Module):
|
27 |
+
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
dim (int): Number of input channels.
|
31 |
+
intermediate_dim (int): Dimensionality of the intermediate layer.
|
32 |
+
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
33 |
+
Defaults to None.
|
34 |
+
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
35 |
+
None means non-conditional LayerNorm. Defaults to None.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dim: int,
|
41 |
+
intermediate_dim: int,
|
42 |
+
layer_scale_init_value: float,
|
43 |
+
condition_dim: Optional[int] = None,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.dwconv = nn.Conv1d(
|
47 |
+
dim, dim, kernel_size=7, padding=3, groups=dim
|
48 |
+
) # depthwise conv
|
49 |
+
self.adanorm = condition_dim is not None
|
50 |
+
if condition_dim:
|
51 |
+
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
|
52 |
+
else:
|
53 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
54 |
+
self.pwconv1 = nn.Linear(
|
55 |
+
dim, intermediate_dim
|
56 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
57 |
+
self.act = nn.GELU()
|
58 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
59 |
+
self.gamma = (
|
60 |
+
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
61 |
+
if layer_scale_init_value > 0
|
62 |
+
else None
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
67 |
+
) -> torch.Tensor:
|
68 |
+
residual = x
|
69 |
+
x = self.dwconv(x)
|
70 |
+
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
71 |
+
if self.adanorm:
|
72 |
+
assert cond_embedding_id is not None
|
73 |
+
x = self.norm(x, cond_embedding_id)
|
74 |
+
else:
|
75 |
+
x = self.norm(x)
|
76 |
+
x = self.pwconv1(x)
|
77 |
+
x = self.act(x)
|
78 |
+
x = self.pwconv2(x)
|
79 |
+
if self.gamma is not None:
|
80 |
+
x = self.gamma * x
|
81 |
+
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
82 |
+
|
83 |
+
x = residual + x
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
class AdaLayerNorm(nn.Module):
|
88 |
+
"""
|
89 |
+
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
90 |
+
|
91 |
+
Args:
|
92 |
+
condition_dim (int): Dimension of the condition.
|
93 |
+
embedding_dim (int): Dimension of the embeddings.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6):
|
97 |
+
super().__init__()
|
98 |
+
self.eps = eps
|
99 |
+
self.dim = embedding_dim
|
100 |
+
self.scale = nn.Linear(condition_dim, embedding_dim)
|
101 |
+
self.shift = nn.Linear(condition_dim, embedding_dim)
|
102 |
+
torch.nn.init.ones_(self.scale.weight)
|
103 |
+
torch.nn.init.zeros_(self.shift.weight)
|
104 |
+
|
105 |
+
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor:
|
106 |
+
scale = self.scale(cond_embedding)
|
107 |
+
shift = self.shift(cond_embedding)
|
108 |
+
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
109 |
+
x = x * scale.unsqueeze(1) + shift.unsqueeze(1)
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class ResBlock1(nn.Module):
|
114 |
+
"""
|
115 |
+
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
116 |
+
but without upsampling layers.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
dim (int): Number of input channels.
|
120 |
+
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
121 |
+
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
122 |
+
Defaults to (1, 3, 5).
|
123 |
+
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
124 |
+
Defaults to 0.1.
|
125 |
+
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
126 |
+
Defaults to None.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
dim: int,
|
132 |
+
kernel_size: int = 3,
|
133 |
+
dilation: Tuple[int, int, int] = (1, 3, 5),
|
134 |
+
lrelu_slope: float = 0.1,
|
135 |
+
layer_scale_init_value: Optional[float] = None,
|
136 |
+
):
|
137 |
+
super().__init__()
|
138 |
+
self.lrelu_slope = lrelu_slope
|
139 |
+
self.convs1 = nn.ModuleList(
|
140 |
+
[
|
141 |
+
weight_norm(
|
142 |
+
nn.Conv1d(
|
143 |
+
dim,
|
144 |
+
dim,
|
145 |
+
kernel_size,
|
146 |
+
1,
|
147 |
+
dilation=dilation[0],
|
148 |
+
padding=self.get_padding(kernel_size, dilation[0]),
|
149 |
+
)
|
150 |
+
),
|
151 |
+
weight_norm(
|
152 |
+
nn.Conv1d(
|
153 |
+
dim,
|
154 |
+
dim,
|
155 |
+
kernel_size,
|
156 |
+
1,
|
157 |
+
dilation=dilation[1],
|
158 |
+
padding=self.get_padding(kernel_size, dilation[1]),
|
159 |
+
)
|
160 |
+
),
|
161 |
+
weight_norm(
|
162 |
+
nn.Conv1d(
|
163 |
+
dim,
|
164 |
+
dim,
|
165 |
+
kernel_size,
|
166 |
+
1,
|
167 |
+
dilation=dilation[2],
|
168 |
+
padding=self.get_padding(kernel_size, dilation[2]),
|
169 |
+
)
|
170 |
+
),
|
171 |
+
]
|
172 |
+
)
|
173 |
+
|
174 |
+
self.convs2 = nn.ModuleList(
|
175 |
+
[
|
176 |
+
weight_norm(
|
177 |
+
nn.Conv1d(
|
178 |
+
dim,
|
179 |
+
dim,
|
180 |
+
kernel_size,
|
181 |
+
1,
|
182 |
+
dilation=1,
|
183 |
+
padding=self.get_padding(kernel_size, 1),
|
184 |
+
)
|
185 |
+
),
|
186 |
+
weight_norm(
|
187 |
+
nn.Conv1d(
|
188 |
+
dim,
|
189 |
+
dim,
|
190 |
+
kernel_size,
|
191 |
+
1,
|
192 |
+
dilation=1,
|
193 |
+
padding=self.get_padding(kernel_size, 1),
|
194 |
+
)
|
195 |
+
),
|
196 |
+
weight_norm(
|
197 |
+
nn.Conv1d(
|
198 |
+
dim,
|
199 |
+
dim,
|
200 |
+
kernel_size,
|
201 |
+
1,
|
202 |
+
dilation=1,
|
203 |
+
padding=self.get_padding(kernel_size, 1),
|
204 |
+
)
|
205 |
+
),
|
206 |
+
]
|
207 |
+
)
|
208 |
+
|
209 |
+
self.gamma = nn.ParameterList(
|
210 |
+
[
|
211 |
+
(
|
212 |
+
nn.Parameter(
|
213 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
214 |
+
)
|
215 |
+
if layer_scale_init_value is not None
|
216 |
+
else None
|
217 |
+
),
|
218 |
+
(
|
219 |
+
nn.Parameter(
|
220 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
221 |
+
)
|
222 |
+
if layer_scale_init_value is not None
|
223 |
+
else None
|
224 |
+
),
|
225 |
+
(
|
226 |
+
nn.Parameter(
|
227 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
228 |
+
)
|
229 |
+
if layer_scale_init_value is not None
|
230 |
+
else None
|
231 |
+
),
|
232 |
+
]
|
233 |
+
)
|
234 |
+
|
235 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
236 |
+
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
237 |
+
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
238 |
+
xt = c1(xt)
|
239 |
+
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
240 |
+
xt = c2(xt)
|
241 |
+
if gamma is not None:
|
242 |
+
xt = gamma * xt
|
243 |
+
x = xt + x
|
244 |
+
return x
|
245 |
+
|
246 |
+
def remove_weight_norm(self):
|
247 |
+
for l in self.convs1:
|
248 |
+
remove_weight_norm(l)
|
249 |
+
for l in self.convs2:
|
250 |
+
remove_weight_norm(l)
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
254 |
+
return int((kernel_size * dilation - dilation) / 2)
|
255 |
+
|
256 |
+
|
257 |
+
class Backbone(nn.Module):
|
258 |
+
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
259 |
+
|
260 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
261 |
+
"""
|
262 |
+
Args:
|
263 |
+
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
264 |
+
C denotes output features, and L is the sequence length.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
268 |
+
and H denotes the model dimension.
|
269 |
+
"""
|
270 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
271 |
+
|
272 |
+
|
273 |
+
class VocosBackbone(Backbone):
|
274 |
+
"""
|
275 |
+
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
276 |
+
|
277 |
+
Args:
|
278 |
+
input_channels (int): Number of input features channels.
|
279 |
+
dim (int): Hidden dimension of the model.
|
280 |
+
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
281 |
+
num_layers (int): Number of ConvNeXtBlock layers.
|
282 |
+
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
283 |
+
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
284 |
+
None means non-conditional model. Defaults to None.
|
285 |
+
"""
|
286 |
+
|
287 |
+
def __init__(
|
288 |
+
self,
|
289 |
+
input_channels: int,
|
290 |
+
dim: int,
|
291 |
+
intermediate_dim: int,
|
292 |
+
num_layers: int,
|
293 |
+
layer_scale_init_value: Optional[float] = None,
|
294 |
+
condition_dim: Optional[int] = None,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
self.input_channels = input_channels
|
298 |
+
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
299 |
+
self.adanorm = condition_dim is not None
|
300 |
+
if condition_dim:
|
301 |
+
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
|
302 |
+
else:
|
303 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
304 |
+
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
305 |
+
self.convnext = nn.ModuleList(
|
306 |
+
[
|
307 |
+
ConvNeXtBlock(
|
308 |
+
dim=dim,
|
309 |
+
intermediate_dim=intermediate_dim,
|
310 |
+
layer_scale_init_value=layer_scale_init_value,
|
311 |
+
condition_dim=condition_dim,
|
312 |
+
)
|
313 |
+
for _ in range(num_layers)
|
314 |
+
]
|
315 |
+
)
|
316 |
+
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
317 |
+
self.apply(self._init_weights)
|
318 |
+
|
319 |
+
def _init_weights(self, m):
|
320 |
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
321 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
322 |
+
nn.init.constant_(m.bias, 0)
|
323 |
+
|
324 |
+
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor:
|
325 |
+
x = self.embed(x)
|
326 |
+
if self.adanorm:
|
327 |
+
assert condition is not None
|
328 |
+
x = self.norm(x.transpose(1, 2), condition)
|
329 |
+
else:
|
330 |
+
x = self.norm(x.transpose(1, 2))
|
331 |
+
x = x.transpose(1, 2)
|
332 |
+
for conv_block in self.convnext:
|
333 |
+
x = conv_block(x, condition)
|
334 |
+
x = self.final_layer_norm(x.transpose(1, 2))
|
335 |
+
return x
|
336 |
+
|
337 |
+
|
338 |
+
class VocosResNetBackbone(Backbone):
|
339 |
+
"""
|
340 |
+
Vocos backbone module built with ResBlocks.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
input_channels (int): Number of input features channels.
|
344 |
+
dim (int): Hidden dimension of the model.
|
345 |
+
num_blocks (int): Number of ResBlock1 blocks.
|
346 |
+
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
347 |
+
"""
|
348 |
+
|
349 |
+
def __init__(
|
350 |
+
self,
|
351 |
+
input_channels,
|
352 |
+
dim,
|
353 |
+
num_blocks,
|
354 |
+
layer_scale_init_value=None,
|
355 |
+
):
|
356 |
+
super().__init__()
|
357 |
+
self.input_channels = input_channels
|
358 |
+
self.embed = weight_norm(
|
359 |
+
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
|
360 |
+
)
|
361 |
+
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
362 |
+
self.resnet = nn.Sequential(
|
363 |
+
*[
|
364 |
+
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
|
365 |
+
for _ in range(num_blocks)
|
366 |
+
]
|
367 |
+
)
|
368 |
+
|
369 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
370 |
+
x = self.embed(x)
|
371 |
+
x = self.resnet(x)
|
372 |
+
x = x.transpose(1, 2)
|
373 |
+
return x
|
sparktts/modules/encoder_decoder/feat_decoder.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
from sparktts.modules.blocks.vocos import VocosBackbone
|
23 |
+
from sparktts.modules.blocks.samper import SamplingBlock
|
24 |
+
|
25 |
+
|
26 |
+
class Decoder(nn.Module):
|
27 |
+
"""Decoder module with convnext and upsampling blocks
|
28 |
+
|
29 |
+
Args:
|
30 |
+
sample_ratios (List[int]): sample ratios
|
31 |
+
example: [2, 2] means downsample by 2x and then upsample by 2x
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
input_channels: int,
|
37 |
+
vocos_dim: int,
|
38 |
+
vocos_intermediate_dim: int,
|
39 |
+
vocos_num_layers: int,
|
40 |
+
out_channels: int,
|
41 |
+
condition_dim: int = None,
|
42 |
+
sample_ratios: List[int] = [1, 1],
|
43 |
+
use_tanh_at_final: bool = False,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
self.linear_pre = nn.Linear(input_channels, vocos_dim)
|
48 |
+
modules = [
|
49 |
+
nn.Sequential(
|
50 |
+
SamplingBlock(
|
51 |
+
dim=vocos_dim,
|
52 |
+
groups=vocos_dim,
|
53 |
+
upsample_scale=ratio,
|
54 |
+
),
|
55 |
+
VocosBackbone(
|
56 |
+
input_channels=vocos_dim,
|
57 |
+
dim=vocos_dim,
|
58 |
+
intermediate_dim=vocos_intermediate_dim,
|
59 |
+
num_layers=2,
|
60 |
+
condition_dim=None,
|
61 |
+
),
|
62 |
+
)
|
63 |
+
for ratio in sample_ratios
|
64 |
+
]
|
65 |
+
|
66 |
+
self.downsample = nn.Sequential(*modules)
|
67 |
+
|
68 |
+
self.vocos_backbone = VocosBackbone(
|
69 |
+
input_channels=vocos_dim,
|
70 |
+
dim=vocos_dim,
|
71 |
+
intermediate_dim=vocos_intermediate_dim,
|
72 |
+
num_layers=vocos_num_layers,
|
73 |
+
condition_dim=condition_dim,
|
74 |
+
)
|
75 |
+
self.linear = nn.Linear(vocos_dim, out_channels)
|
76 |
+
self.use_tanh_at_final = use_tanh_at_final
|
77 |
+
|
78 |
+
def forward(self, x: torch.Tensor, c: torch.Tensor = None):
|
79 |
+
"""encoder forward.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
x (torch.Tensor): (batch_size, input_channels, length)
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
x (torch.Tensor): (batch_size, encode_channels, length)
|
86 |
+
"""
|
87 |
+
x = self.linear_pre(x.transpose(1, 2))
|
88 |
+
x = self.downsample(x).transpose(1, 2)
|
89 |
+
x = self.vocos_backbone(x, condition=c)
|
90 |
+
x = self.linear(x).transpose(1, 2)
|
91 |
+
if self.use_tanh_at_final:
|
92 |
+
x = torch.tanh(x)
|
93 |
+
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
# test
|
98 |
+
if __name__ == "__main__":
|
99 |
+
test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
|
100 |
+
condition = torch.randn(8, 256)
|
101 |
+
decoder = Decoder(
|
102 |
+
input_channels=1024,
|
103 |
+
vocos_dim=384,
|
104 |
+
vocos_intermediate_dim=2048,
|
105 |
+
vocos_num_layers=12,
|
106 |
+
out_channels=256,
|
107 |
+
condition_dim=256,
|
108 |
+
sample_ratios=[2, 2],
|
109 |
+
)
|
110 |
+
output = decoder(test_input, condition)
|
111 |
+
print(output.shape) # torch.Size([8, 256, 200])
|
112 |
+
if output.shape == torch.Size([8, 256, 200]):
|
113 |
+
print("Decoder test passed")
|
114 |
+
else:
|
115 |
+
print("Decoder test failed")
|
sparktts/modules/encoder_decoder/feat_encoder.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
from sparktts.modules.blocks.vocos import VocosBackbone
|
23 |
+
from sparktts.modules.blocks.samper import SamplingBlock
|
24 |
+
|
25 |
+
|
26 |
+
class Encoder(nn.Module):
|
27 |
+
"""Encoder module with convnext and downsampling blocks"""
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
input_channels: int,
|
32 |
+
vocos_dim: int,
|
33 |
+
vocos_intermediate_dim: int,
|
34 |
+
vocos_num_layers: int,
|
35 |
+
out_channels: int,
|
36 |
+
sample_ratios: List[int] = [1, 1],
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
"""
|
40 |
+
Encoder module with VocosBackbone and sampling blocks.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
sample_ratios (List[int]): sample ratios
|
44 |
+
example: [2, 2] means downsample by 2x and then upsample by 2x
|
45 |
+
"""
|
46 |
+
self.encoder = VocosBackbone(
|
47 |
+
input_channels=input_channels,
|
48 |
+
dim=vocos_dim,
|
49 |
+
intermediate_dim=vocos_intermediate_dim,
|
50 |
+
num_layers=vocos_num_layers,
|
51 |
+
condition_dim=None,
|
52 |
+
)
|
53 |
+
|
54 |
+
modules = [
|
55 |
+
nn.Sequential(
|
56 |
+
SamplingBlock(
|
57 |
+
dim=vocos_dim,
|
58 |
+
groups=vocos_dim,
|
59 |
+
downsample_scale=ratio,
|
60 |
+
),
|
61 |
+
VocosBackbone(
|
62 |
+
input_channels=vocos_dim,
|
63 |
+
dim=vocos_dim,
|
64 |
+
intermediate_dim=vocos_intermediate_dim,
|
65 |
+
num_layers=2,
|
66 |
+
condition_dim=None,
|
67 |
+
),
|
68 |
+
)
|
69 |
+
for ratio in sample_ratios
|
70 |
+
]
|
71 |
+
|
72 |
+
self.downsample = nn.Sequential(*modules)
|
73 |
+
|
74 |
+
self.project = nn.Linear(vocos_dim, out_channels)
|
75 |
+
|
76 |
+
def forward(self, x: torch.Tensor, *args):
|
77 |
+
"""
|
78 |
+
Args:
|
79 |
+
x (torch.Tensor): (batch_size, input_channels, length)
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
x (torch.Tensor): (batch_size, encode_channels, length)
|
83 |
+
"""
|
84 |
+
x = self.encoder(x)
|
85 |
+
x = self.downsample(x)
|
86 |
+
x = self.project(x)
|
87 |
+
return x.transpose(1, 2)
|
88 |
+
|
89 |
+
|
90 |
+
# test
|
91 |
+
if __name__ == "__main__":
|
92 |
+
test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
|
93 |
+
encoder = Encoder(
|
94 |
+
input_channels=1024,
|
95 |
+
vocos_dim=384,
|
96 |
+
vocos_intermediate_dim=2048,
|
97 |
+
vocos_num_layers=12,
|
98 |
+
out_channels=256,
|
99 |
+
sample_ratios=[2, 2],
|
100 |
+
)
|
101 |
+
|
102 |
+
output = encoder(test_input)
|
103 |
+
print(output.shape) # torch.Size([8, 256, 12])
|
104 |
+
if output.shape == torch.Size([8, 256, 12]):
|
105 |
+
print("test successful")
|
sparktts/modules/encoder_decoder/wave_generator.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Xinsheng Wang (w.xinshawn@gmail.com)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0
|
16 |
+
|
17 |
+
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from sparktts.modules.blocks.layers import (
|
21 |
+
Snake1d,
|
22 |
+
WNConv1d,
|
23 |
+
ResidualUnit,
|
24 |
+
WNConvTranspose1d,
|
25 |
+
init_weights,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
class DecoderBlock(nn.Module):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
input_dim: int = 16,
|
33 |
+
output_dim: int = 8,
|
34 |
+
kernel_size: int = 2,
|
35 |
+
stride: int = 1,
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
self.block = nn.Sequential(
|
39 |
+
Snake1d(input_dim),
|
40 |
+
WNConvTranspose1d(
|
41 |
+
input_dim,
|
42 |
+
output_dim,
|
43 |
+
kernel_size=kernel_size,
|
44 |
+
stride=stride,
|
45 |
+
padding=(kernel_size - stride) // 2,
|
46 |
+
),
|
47 |
+
ResidualUnit(output_dim, dilation=1),
|
48 |
+
ResidualUnit(output_dim, dilation=3),
|
49 |
+
ResidualUnit(output_dim, dilation=9),
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
return self.block(x)
|
54 |
+
|
55 |
+
|
56 |
+
class WaveGenerator(nn.Module):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
input_channel,
|
60 |
+
channels,
|
61 |
+
rates,
|
62 |
+
kernel_sizes,
|
63 |
+
d_out: int = 1,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
# Add first conv layer
|
68 |
+
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
|
69 |
+
|
70 |
+
# Add upsampling + MRF blocks
|
71 |
+
for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)):
|
72 |
+
input_dim = channels // 2**i
|
73 |
+
output_dim = channels // 2 ** (i + 1)
|
74 |
+
layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)]
|
75 |
+
|
76 |
+
# Add final conv layer
|
77 |
+
layers += [
|
78 |
+
Snake1d(output_dim),
|
79 |
+
WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
|
80 |
+
nn.Tanh(),
|
81 |
+
]
|
82 |
+
|
83 |
+
self.model = nn.Sequential(*layers)
|
84 |
+
|
85 |
+
self.apply(init_weights)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
return self.model(x)
|
sparktts/modules/fsq/finite_scalar_quantization.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
|
3 |
+
Code adapted from Jax version in Appendix A.1
|
4 |
+
"""
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
from functools import wraps, partial
|
8 |
+
from contextlib import nullcontext
|
9 |
+
from typing import List, Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from torch.nn import Module
|
14 |
+
from torch import Tensor, int32
|
15 |
+
from torch.amp import autocast
|
16 |
+
|
17 |
+
from einops import rearrange, pack, unpack
|
18 |
+
|
19 |
+
# helper functions
|
20 |
+
|
21 |
+
|
22 |
+
def exists(v):
|
23 |
+
return v is not None
|
24 |
+
|
25 |
+
|
26 |
+
def default(*args):
|
27 |
+
for arg in args:
|
28 |
+
if exists(arg):
|
29 |
+
return arg
|
30 |
+
return None
|
31 |
+
|
32 |
+
|
33 |
+
def maybe(fn):
|
34 |
+
@wraps(fn)
|
35 |
+
def inner(x, *args, **kwargs):
|
36 |
+
if not exists(x):
|
37 |
+
return x
|
38 |
+
return fn(x, *args, **kwargs)
|
39 |
+
|
40 |
+
return inner
|
41 |
+
|
42 |
+
|
43 |
+
def pack_one(t, pattern):
|
44 |
+
return pack([t], pattern)
|
45 |
+
|
46 |
+
|
47 |
+
def unpack_one(t, ps, pattern):
|
48 |
+
return unpack(t, ps, pattern)[0]
|
49 |
+
|
50 |
+
|
51 |
+
# tensor helpers
|
52 |
+
|
53 |
+
|
54 |
+
def round_ste(z: Tensor) -> Tensor:
|
55 |
+
"""Round with straight through gradients."""
|
56 |
+
zhat = z.round()
|
57 |
+
return z + (zhat - z).detach()
|
58 |
+
|
59 |
+
|
60 |
+
# main class
|
61 |
+
|
62 |
+
|
63 |
+
class FSQ(Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
levels: List[int],
|
67 |
+
dim: int | None = None,
|
68 |
+
num_codebooks=1,
|
69 |
+
keep_num_codebooks_dim: bool | None = None,
|
70 |
+
scale: float | None = None,
|
71 |
+
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
|
72 |
+
channel_first: bool = False,
|
73 |
+
projection_has_bias: bool = True,
|
74 |
+
return_indices=True,
|
75 |
+
force_quantization_f32=True,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
_levels = torch.tensor(levels, dtype=int32)
|
79 |
+
self.register_buffer("_levels", _levels, persistent=False)
|
80 |
+
|
81 |
+
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
|
82 |
+
self.register_buffer("_basis", _basis, persistent=False)
|
83 |
+
|
84 |
+
self.scale = scale
|
85 |
+
|
86 |
+
codebook_dim = len(levels)
|
87 |
+
self.codebook_dim = codebook_dim
|
88 |
+
|
89 |
+
effective_codebook_dim = codebook_dim * num_codebooks
|
90 |
+
self.num_codebooks = num_codebooks
|
91 |
+
self.effective_codebook_dim = effective_codebook_dim
|
92 |
+
|
93 |
+
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
|
94 |
+
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
|
95 |
+
self.keep_num_codebooks_dim = keep_num_codebooks_dim
|
96 |
+
|
97 |
+
self.dim = default(dim, len(_levels) * num_codebooks)
|
98 |
+
|
99 |
+
self.channel_first = channel_first
|
100 |
+
|
101 |
+
has_projections = self.dim != effective_codebook_dim
|
102 |
+
self.project_in = (
|
103 |
+
nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
|
104 |
+
if has_projections
|
105 |
+
else nn.Identity()
|
106 |
+
)
|
107 |
+
self.project_out = (
|
108 |
+
nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
|
109 |
+
if has_projections
|
110 |
+
else nn.Identity()
|
111 |
+
)
|
112 |
+
|
113 |
+
self.has_projections = has_projections
|
114 |
+
|
115 |
+
self.return_indices = return_indices
|
116 |
+
if return_indices:
|
117 |
+
self.codebook_size = self._levels.prod().item()
|
118 |
+
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
|
119 |
+
self.register_buffer(
|
120 |
+
"implicit_codebook", implicit_codebook, persistent=False
|
121 |
+
)
|
122 |
+
|
123 |
+
self.allowed_dtypes = allowed_dtypes
|
124 |
+
self.force_quantization_f32 = force_quantization_f32
|
125 |
+
|
126 |
+
def bound(self, z, eps: float = 1e-3):
|
127 |
+
"""Bound `z`, an array of shape (..., d)."""
|
128 |
+
half_l = (self._levels - 1) * (1 + eps) / 2
|
129 |
+
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
|
130 |
+
shift = (offset / half_l).atanh()
|
131 |
+
return (z + shift).tanh() * half_l - offset
|
132 |
+
|
133 |
+
def quantize(self, z):
|
134 |
+
"""Quantizes z, returns quantized zhat, same shape as z."""
|
135 |
+
quantized = round_ste(self.bound(z))
|
136 |
+
half_width = self._levels // 2 # Renormalize to [-1, 1].
|
137 |
+
return quantized / half_width
|
138 |
+
|
139 |
+
def _scale_and_shift(self, zhat_normalized):
|
140 |
+
half_width = self._levels // 2
|
141 |
+
return (zhat_normalized * half_width) + half_width
|
142 |
+
|
143 |
+
def _scale_and_shift_inverse(self, zhat):
|
144 |
+
half_width = self._levels // 2
|
145 |
+
return (zhat - half_width) / half_width
|
146 |
+
|
147 |
+
def _indices_to_codes(self, indices):
|
148 |
+
level_indices = self.indices_to_level_indices(indices)
|
149 |
+
codes = self._scale_and_shift_inverse(level_indices)
|
150 |
+
return codes
|
151 |
+
|
152 |
+
def codes_to_indices(self, zhat):
|
153 |
+
"""Converts a `code` to an index in the codebook."""
|
154 |
+
assert zhat.shape[-1] == self.codebook_dim
|
155 |
+
zhat = self._scale_and_shift(zhat)
|
156 |
+
return (zhat * self._basis).sum(dim=-1).to(int32)
|
157 |
+
|
158 |
+
def indices_to_level_indices(self, indices):
|
159 |
+
"""Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
|
160 |
+
indices = rearrange(indices, "... -> ... 1")
|
161 |
+
codes_non_centered = (indices // self._basis) % self._levels
|
162 |
+
return codes_non_centered
|
163 |
+
|
164 |
+
def indices_to_codes(self, indices):
|
165 |
+
"""Inverse of `codes_to_indices`."""
|
166 |
+
assert exists(indices)
|
167 |
+
|
168 |
+
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
|
169 |
+
|
170 |
+
codes = self._indices_to_codes(indices)
|
171 |
+
|
172 |
+
if self.keep_num_codebooks_dim:
|
173 |
+
codes = rearrange(codes, "... c d -> ... (c d)")
|
174 |
+
|
175 |
+
codes = self.project_out(codes)
|
176 |
+
|
177 |
+
if is_img_or_video or self.channel_first:
|
178 |
+
codes = rearrange(codes, "b ... d -> b d ...")
|
179 |
+
|
180 |
+
return codes
|
181 |
+
|
182 |
+
def forward(self, z):
|
183 |
+
"""
|
184 |
+
einstein notation
|
185 |
+
b - batch
|
186 |
+
n - sequence (or flattened spatial dimensions)
|
187 |
+
d - feature dimension
|
188 |
+
c - number of codebook dim
|
189 |
+
"""
|
190 |
+
|
191 |
+
is_img_or_video = z.ndim >= 4
|
192 |
+
need_move_channel_last = is_img_or_video or self.channel_first
|
193 |
+
|
194 |
+
# standardize image or video into (batch, seq, dimension)
|
195 |
+
|
196 |
+
if need_move_channel_last:
|
197 |
+
z = rearrange(z, "b d ... -> b ... d")
|
198 |
+
z, ps = pack_one(z, "b * d")
|
199 |
+
|
200 |
+
assert (
|
201 |
+
z.shape[-1] == self.dim
|
202 |
+
), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
|
203 |
+
|
204 |
+
z = self.project_in(z)
|
205 |
+
|
206 |
+
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
|
207 |
+
|
208 |
+
# whether to force quantization step to be full precision or not
|
209 |
+
|
210 |
+
force_f32 = self.force_quantization_f32
|
211 |
+
quantization_context = (
|
212 |
+
partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
|
213 |
+
)
|
214 |
+
|
215 |
+
with quantization_context():
|
216 |
+
orig_dtype = z.dtype
|
217 |
+
|
218 |
+
if force_f32 and orig_dtype not in self.allowed_dtypes:
|
219 |
+
z = z.float()
|
220 |
+
|
221 |
+
codes = self.quantize(z)
|
222 |
+
|
223 |
+
# returning indices could be optional
|
224 |
+
|
225 |
+
indices = None
|
226 |
+
|
227 |
+
if self.return_indices:
|
228 |
+
indices = self.codes_to_indices(codes)
|
229 |
+
|
230 |
+
codes = rearrange(codes, "b n c d -> b n (c d)")
|
231 |
+
|
232 |
+
codes = codes.type(orig_dtype)
|
233 |
+
|
234 |
+
# project out
|
235 |
+
|
236 |
+
out = self.project_out(codes)
|
237 |
+
|
238 |
+
# reconstitute image or video dimensions
|
239 |
+
|
240 |
+
if need_move_channel_last:
|
241 |
+
out = unpack_one(out, ps, "b * d")
|
242 |
+
out = rearrange(out, "b ... d -> b d ...")
|
243 |
+
|
244 |
+
indices = maybe(unpack_one)(indices, ps, "b * c")
|
245 |
+
|
246 |
+
if not self.keep_num_codebooks_dim and self.return_indices:
|
247 |
+
indices = maybe(rearrange)(indices, "... 1 -> ...")
|
248 |
+
|
249 |
+
# return quantized output and indices
|
250 |
+
|
251 |
+
return out, indices
|
sparktts/modules/fsq/residual_fsq.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
from typing import List
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import Module
|
9 |
+
from torch.amp import autocast
|
10 |
+
from einx import get_at
|
11 |
+
from einops import rearrange, reduce, pack, unpack
|
12 |
+
|
13 |
+
from sparktts.modules.fsq.finite_scalar_quantization import FSQ
|
14 |
+
|
15 |
+
|
16 |
+
def exists(val):
|
17 |
+
return val is not None
|
18 |
+
|
19 |
+
|
20 |
+
def first(l):
|
21 |
+
return l[0]
|
22 |
+
|
23 |
+
|
24 |
+
def default(val, d):
|
25 |
+
return val if exists(val) else d
|
26 |
+
|
27 |
+
|
28 |
+
def round_up_multiple(num, mult):
|
29 |
+
return ceil(num / mult) * mult
|
30 |
+
|
31 |
+
|
32 |
+
# distributed helpers
|
33 |
+
|
34 |
+
|
35 |
+
def is_distributed():
|
36 |
+
return dist.is_initialized() and dist.get_world_size() > 1
|
37 |
+
|
38 |
+
|
39 |
+
def get_maybe_sync_seed(device, max_size=10_000):
|
40 |
+
rand_int = torch.randint(0, max_size, (), device=device)
|
41 |
+
|
42 |
+
if is_distributed():
|
43 |
+
dist.all_reduce(rand_int)
|
44 |
+
|
45 |
+
return rand_int.item()
|
46 |
+
|
47 |
+
|
48 |
+
class ResidualFSQ(Module):
|
49 |
+
"""Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf"""
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
*,
|
54 |
+
levels: List[int],
|
55 |
+
num_quantizers,
|
56 |
+
dim=None,
|
57 |
+
is_channel_first=False,
|
58 |
+
quantize_dropout=False,
|
59 |
+
quantize_dropout_cutoff_index=0,
|
60 |
+
quantize_dropout_multiple_of=1,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
codebook_dim = len(levels)
|
65 |
+
dim = default(dim, codebook_dim)
|
66 |
+
|
67 |
+
requires_projection = codebook_dim != dim
|
68 |
+
self.project_in = (
|
69 |
+
nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
|
70 |
+
)
|
71 |
+
self.project_out = (
|
72 |
+
nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
|
73 |
+
)
|
74 |
+
self.has_projections = requires_projection
|
75 |
+
|
76 |
+
self.is_channel_first = is_channel_first
|
77 |
+
self.num_quantizers = num_quantizers
|
78 |
+
|
79 |
+
self.levels = levels
|
80 |
+
self.layers = nn.ModuleList([])
|
81 |
+
|
82 |
+
levels_tensor = torch.Tensor(levels)
|
83 |
+
|
84 |
+
scales = []
|
85 |
+
|
86 |
+
for ind in range(num_quantizers):
|
87 |
+
scales.append((levels_tensor - 1) ** -ind)
|
88 |
+
|
89 |
+
fsq = FSQ(levels=levels, dim=codebook_dim, **kwargs)
|
90 |
+
|
91 |
+
self.layers.append(fsq)
|
92 |
+
|
93 |
+
assert all([not fsq.has_projections for fsq in self.layers])
|
94 |
+
|
95 |
+
self.codebook_size = self.layers[0].codebook_size
|
96 |
+
|
97 |
+
self.register_buffer("scales", torch.stack(scales), persistent=False)
|
98 |
+
|
99 |
+
self.quantize_dropout = quantize_dropout and num_quantizers > 1
|
100 |
+
|
101 |
+
assert quantize_dropout_cutoff_index >= 0
|
102 |
+
|
103 |
+
self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
|
104 |
+
self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4
|
105 |
+
|
106 |
+
@property
|
107 |
+
def codebooks(self):
|
108 |
+
codebooks = [layer.implicit_codebook for layer in self.layers]
|
109 |
+
codebooks = torch.stack(codebooks, dim=0)
|
110 |
+
return codebooks
|
111 |
+
|
112 |
+
def get_codes_from_indices(self, indices):
|
113 |
+
|
114 |
+
batch, quantize_dim = indices.shape[0], indices.shape[-1]
|
115 |
+
|
116 |
+
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
|
117 |
+
|
118 |
+
indices, ps = pack([indices], "b * q")
|
119 |
+
|
120 |
+
# because of quantize dropout, one can pass in indices that are coarse
|
121 |
+
# and the network should be able to reconstruct
|
122 |
+
|
123 |
+
if quantize_dim < self.num_quantizers:
|
124 |
+
assert (
|
125 |
+
self.quantize_dropout > 0.0
|
126 |
+
), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
|
127 |
+
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1)
|
128 |
+
|
129 |
+
# take care of quantizer dropout
|
130 |
+
|
131 |
+
mask = indices == -1
|
132 |
+
indices = indices.masked_fill(
|
133 |
+
mask, 0
|
134 |
+
) # have it fetch a dummy code to be masked out later
|
135 |
+
|
136 |
+
all_codes = get_at("q [c] d, b n q -> q b n d", self.codebooks, indices)
|
137 |
+
|
138 |
+
# mask out any codes that were dropout-ed
|
139 |
+
|
140 |
+
all_codes = all_codes.masked_fill(rearrange(mask, "b n q -> q b n 1"), 0.0)
|
141 |
+
|
142 |
+
# scale the codes
|
143 |
+
|
144 |
+
scales = rearrange(self.scales, "q d -> q 1 1 d")
|
145 |
+
all_codes = all_codes * scales
|
146 |
+
|
147 |
+
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
|
148 |
+
|
149 |
+
(all_codes,) = unpack(all_codes, ps, "q b * d")
|
150 |
+
|
151 |
+
return all_codes
|
152 |
+
|
153 |
+
def get_output_from_indices(self, indices):
|
154 |
+
codes = self.get_codes_from_indices(indices)
|
155 |
+
codes_summed = reduce(codes, "q ... -> ...", "sum")
|
156 |
+
return self.project_out(codes_summed)
|
157 |
+
|
158 |
+
def forward(self, x, return_all_codes=False, rand_quantize_dropout_fixed_seed=None):
|
159 |
+
num_quant, quant_dropout_multiple_of, device = (
|
160 |
+
self.num_quantizers,
|
161 |
+
self.quantize_dropout_multiple_of,
|
162 |
+
x.device,
|
163 |
+
)
|
164 |
+
|
165 |
+
# handle channel first
|
166 |
+
|
167 |
+
if self.is_channel_first:
|
168 |
+
x = rearrange(x, "b d ... -> b ... d")
|
169 |
+
x, ps = pack([x], "b * d")
|
170 |
+
|
171 |
+
# maybe project in
|
172 |
+
|
173 |
+
x = self.project_in(x)
|
174 |
+
|
175 |
+
quantized_out = 0.0
|
176 |
+
residual = x
|
177 |
+
|
178 |
+
all_indices = []
|
179 |
+
|
180 |
+
should_quantize_dropout = self.training and self.quantize_dropout
|
181 |
+
|
182 |
+
# sample a layer index at which to dropout further residual quantization
|
183 |
+
# also prepare null indices
|
184 |
+
|
185 |
+
if should_quantize_dropout:
|
186 |
+
|
187 |
+
# check if seed is manually passed in
|
188 |
+
|
189 |
+
if not exists(rand_quantize_dropout_fixed_seed):
|
190 |
+
rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device)
|
191 |
+
|
192 |
+
rand = random.Random(rand_quantize_dropout_fixed_seed)
|
193 |
+
|
194 |
+
rand_quantize_dropout_index = rand.randrange(
|
195 |
+
self.quantize_dropout_cutoff_index, num_quant
|
196 |
+
)
|
197 |
+
|
198 |
+
if quant_dropout_multiple_of != 1:
|
199 |
+
rand_quantize_dropout_index = (
|
200 |
+
round_up_multiple(
|
201 |
+
rand_quantize_dropout_index + 1, quant_dropout_multiple_of
|
202 |
+
)
|
203 |
+
- 1
|
204 |
+
)
|
205 |
+
|
206 |
+
null_indices = torch.full(
|
207 |
+
x.shape[:2], -1.0, device=device, dtype=torch.long
|
208 |
+
)
|
209 |
+
|
210 |
+
# go through the layers
|
211 |
+
|
212 |
+
with autocast("cuda", enabled=False):
|
213 |
+
for quantizer_index, (layer, scale) in enumerate(
|
214 |
+
zip(self.layers, self.scales)
|
215 |
+
):
|
216 |
+
|
217 |
+
if (
|
218 |
+
should_quantize_dropout
|
219 |
+
and quantizer_index > rand_quantize_dropout_index
|
220 |
+
):
|
221 |
+
all_indices.append(null_indices)
|
222 |
+
continue
|
223 |
+
|
224 |
+
quantized, indices = layer(residual / scale)
|
225 |
+
|
226 |
+
quantized = quantized * scale
|
227 |
+
|
228 |
+
residual = residual - quantized.detach()
|
229 |
+
quantized_out = quantized_out + quantized
|
230 |
+
|
231 |
+
all_indices.append(indices)
|
232 |
+
|
233 |
+
# project out, if needed
|
234 |
+
|
235 |
+
quantized_out = self.project_out(quantized_out)
|
236 |
+
|
237 |
+
# stack all indices
|
238 |
+
|
239 |
+
all_indices = torch.stack(all_indices, dim=-1)
|
240 |
+
|
241 |
+
# channel first out
|
242 |
+
|
243 |
+
if self.is_channel_first:
|
244 |
+
(quantized_out,) = unpack(quantized_out, ps, "b * d")
|
245 |
+
(all_indices,) = unpack(all_indices, ps, "b * d")
|
246 |
+
|
247 |
+
quantized_out = rearrange(quantized_out, "b ... d -> b d ...")
|
248 |
+
all_indices = rearrange(all_indices, "b ... d -> b d ...")
|
249 |
+
|
250 |
+
# return
|
251 |
+
|
252 |
+
ret = (quantized_out, all_indices)
|
253 |
+
|
254 |
+
if not return_all_codes:
|
255 |
+
return ret
|
256 |
+
|
257 |
+
# whether to return all codes from all codebooks across layers
|
258 |
+
|
259 |
+
all_codes = self.get_codes_from_indices(all_indices)
|
260 |
+
|
261 |
+
# will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
|
262 |
+
|
263 |
+
return (*ret, all_codes)
|
264 |
+
|
265 |
+
|
266 |
+
# grouped residual fsq
|
267 |
+
|
268 |
+
|
269 |
+
class GroupedResidualFSQ(Module):
|
270 |
+
def __init__(self, *, dim, groups=1, accept_image_fmap=False, **kwargs):
|
271 |
+
super().__init__()
|
272 |
+
self.dim = dim
|
273 |
+
self.groups = groups
|
274 |
+
assert (dim % groups) == 0
|
275 |
+
dim_per_group = dim // groups
|
276 |
+
|
277 |
+
self.accept_image_fmap = accept_image_fmap
|
278 |
+
|
279 |
+
self.rvqs = nn.ModuleList([])
|
280 |
+
|
281 |
+
for _ in range(groups):
|
282 |
+
self.rvqs.append(ResidualFSQ(dim=dim_per_group, **kwargs))
|
283 |
+
|
284 |
+
self.codebook_size = self.rvqs[0].codebook_size
|
285 |
+
|
286 |
+
@property
|
287 |
+
def codebooks(self):
|
288 |
+
return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs))
|
289 |
+
|
290 |
+
@property
|
291 |
+
def split_dim(self):
|
292 |
+
return 1 if self.accept_image_fmap else -1
|
293 |
+
|
294 |
+
def get_codes_from_indices(self, indices):
|
295 |
+
codes = tuple(
|
296 |
+
rvq.get_codes_from_indices(chunk_indices)
|
297 |
+
for rvq, chunk_indices in zip(self.rvqs, indices)
|
298 |
+
)
|
299 |
+
return torch.stack(codes)
|
300 |
+
|
301 |
+
def get_output_from_indices(self, indices):
|
302 |
+
outputs = tuple(
|
303 |
+
rvq.get_output_from_indices(chunk_indices)
|
304 |
+
for rvq, chunk_indices in zip(self.rvqs, indices)
|
305 |
+
)
|
306 |
+
return torch.cat(outputs, dim=self.split_dim)
|
307 |
+
|
308 |
+
def forward(self, x, return_all_codes=False):
|
309 |
+
shape, split_dim, device = x.shape, self.split_dim, x.device
|
310 |
+
assert shape[split_dim] == self.dim
|
311 |
+
|
312 |
+
# split the feature dimension into groups
|
313 |
+
|
314 |
+
x = x.chunk(self.groups, dim=split_dim)
|
315 |
+
|
316 |
+
forward_kwargs = dict(
|
317 |
+
return_all_codes=return_all_codes,
|
318 |
+
rand_quantize_dropout_fixed_seed=(
|
319 |
+
get_maybe_sync_seed(device) if self.training else None
|
320 |
+
),
|
321 |
+
)
|
322 |
+
|
323 |
+
# invoke residual vq on each group
|
324 |
+
|
325 |
+
out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x))
|
326 |
+
out = tuple(zip(*out))
|
327 |
+
|
328 |
+
# otherwise, get all the zipped outputs and combine them
|
329 |
+
|
330 |
+
quantized, all_indices, *maybe_all_codes = out
|
331 |
+
|
332 |
+
quantized = torch.cat(quantized, dim=split_dim)
|
333 |
+
all_indices = torch.stack(all_indices)
|
334 |
+
|
335 |
+
ret = (quantized, all_indices, *maybe_all_codes)
|
336 |
+
return ret
|
337 |
+
|
338 |
+
|
339 |
+
if __name__ == "__main__":
|
340 |
+
model = ResidualFSQ(
|
341 |
+
levels=[4, 4, 4, 4, 4, 4],
|
342 |
+
num_quantizers=1,
|
343 |
+
dim=30,
|
344 |
+
is_channel_first=True,
|
345 |
+
quantize_dropout=False,
|
346 |
+
)
|
347 |
+
x = torch.randn(2, 30, 10)
|
348 |
+
quantize, embed_ind = model(x)
|
349 |
+
|
350 |
+
emb_from_ind = model.get_output_from_indices(embed_ind.transpose(1, 2))
|
351 |
+
|
352 |
+
print(quantize == emb_from_ind.transpose(1, 2))
|
353 |
+
|
354 |
+
print("quantize shape", quantize.shape)
|
355 |
+
print("embed_ind", embed_ind)
|
sparktts/modules/speaker/ecapa_tdnn.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Zhengyang Chen (chenzhengyang117@gmail.com)
|
2 |
+
# 2022 Hongji Wang (jijijiang77@gmail.com)
|
3 |
+
# 2023 Bing Han (hanbing97@sjtu.edu.cn)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
""" This implementation is adapted from github repo:
|
18 |
+
https://github.com/lawlict/ECAPA-TDNN.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
import sparktts.modules.speaker.pooling_layers as pooling_layers
|
26 |
+
|
27 |
+
|
28 |
+
class Res2Conv1dReluBn(nn.Module):
|
29 |
+
"""
|
30 |
+
in_channels == out_channels == channels
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
channels,
|
36 |
+
kernel_size=1,
|
37 |
+
stride=1,
|
38 |
+
padding=0,
|
39 |
+
dilation=1,
|
40 |
+
bias=True,
|
41 |
+
scale=4,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
45 |
+
self.scale = scale
|
46 |
+
self.width = channels // scale
|
47 |
+
self.nums = scale if scale == 1 else scale - 1
|
48 |
+
|
49 |
+
self.convs = []
|
50 |
+
self.bns = []
|
51 |
+
for i in range(self.nums):
|
52 |
+
self.convs.append(
|
53 |
+
nn.Conv1d(
|
54 |
+
self.width,
|
55 |
+
self.width,
|
56 |
+
kernel_size,
|
57 |
+
stride,
|
58 |
+
padding,
|
59 |
+
dilation,
|
60 |
+
bias=bias,
|
61 |
+
)
|
62 |
+
)
|
63 |
+
self.bns.append(nn.BatchNorm1d(self.width))
|
64 |
+
self.convs = nn.ModuleList(self.convs)
|
65 |
+
self.bns = nn.ModuleList(self.bns)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
out = []
|
69 |
+
spx = torch.split(x, self.width, 1)
|
70 |
+
sp = spx[0]
|
71 |
+
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
|
72 |
+
# Order: conv -> relu -> bn
|
73 |
+
if i >= 1:
|
74 |
+
sp = sp + spx[i]
|
75 |
+
sp = conv(sp)
|
76 |
+
sp = bn(F.relu(sp))
|
77 |
+
out.append(sp)
|
78 |
+
if self.scale != 1:
|
79 |
+
out.append(spx[self.nums])
|
80 |
+
out = torch.cat(out, dim=1)
|
81 |
+
|
82 |
+
return out
|
83 |
+
|
84 |
+
|
85 |
+
""" Conv1d + BatchNorm1d + ReLU
|
86 |
+
"""
|
87 |
+
|
88 |
+
|
89 |
+
class Conv1dReluBn(nn.Module):
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
in_channels,
|
94 |
+
out_channels,
|
95 |
+
kernel_size=1,
|
96 |
+
stride=1,
|
97 |
+
padding=0,
|
98 |
+
dilation=1,
|
99 |
+
bias=True,
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
self.conv = nn.Conv1d(
|
103 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
|
104 |
+
)
|
105 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return self.bn(F.relu(self.conv(x)))
|
109 |
+
|
110 |
+
|
111 |
+
""" The SE connection of 1D case.
|
112 |
+
"""
|
113 |
+
|
114 |
+
|
115 |
+
class SE_Connect(nn.Module):
|
116 |
+
|
117 |
+
def __init__(self, channels, se_bottleneck_dim=128):
|
118 |
+
super().__init__()
|
119 |
+
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
120 |
+
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
out = x.mean(dim=2)
|
124 |
+
out = F.relu(self.linear1(out))
|
125 |
+
out = torch.sigmoid(self.linear2(out))
|
126 |
+
out = x * out.unsqueeze(2)
|
127 |
+
|
128 |
+
return out
|
129 |
+
|
130 |
+
|
131 |
+
""" SE-Res2Block of the ECAPA-TDNN architecture.
|
132 |
+
"""
|
133 |
+
|
134 |
+
|
135 |
+
class SE_Res2Block(nn.Module):
|
136 |
+
|
137 |
+
def __init__(self, channels, kernel_size, stride, padding, dilation, scale):
|
138 |
+
super().__init__()
|
139 |
+
self.se_res2block = nn.Sequential(
|
140 |
+
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
|
141 |
+
Res2Conv1dReluBn(
|
142 |
+
channels, kernel_size, stride, padding, dilation, scale=scale
|
143 |
+
),
|
144 |
+
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
|
145 |
+
SE_Connect(channels),
|
146 |
+
)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
return x + self.se_res2block(x)
|
150 |
+
|
151 |
+
|
152 |
+
class ECAPA_TDNN(nn.Module):
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
channels=512,
|
157 |
+
feat_dim=80,
|
158 |
+
embed_dim=192,
|
159 |
+
pooling_func="ASTP",
|
160 |
+
global_context_att=False,
|
161 |
+
emb_bn=False,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2)
|
166 |
+
self.layer2 = SE_Res2Block(
|
167 |
+
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8
|
168 |
+
)
|
169 |
+
self.layer3 = SE_Res2Block(
|
170 |
+
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8
|
171 |
+
)
|
172 |
+
self.layer4 = SE_Res2Block(
|
173 |
+
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8
|
174 |
+
)
|
175 |
+
|
176 |
+
cat_channels = channels * 3
|
177 |
+
out_channels = 512 * 3
|
178 |
+
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1)
|
179 |
+
self.pool = getattr(pooling_layers, pooling_func)(
|
180 |
+
in_dim=out_channels, global_context_att=global_context_att
|
181 |
+
)
|
182 |
+
self.pool_out_dim = self.pool.get_out_dim()
|
183 |
+
self.bn = nn.BatchNorm1d(self.pool_out_dim)
|
184 |
+
self.linear = nn.Linear(self.pool_out_dim, embed_dim)
|
185 |
+
self.emb_bn = emb_bn
|
186 |
+
if emb_bn: # better in SSL for SV
|
187 |
+
self.bn2 = nn.BatchNorm1d(embed_dim)
|
188 |
+
else:
|
189 |
+
self.bn2 = nn.Identity()
|
190 |
+
|
191 |
+
def forward(self, x, return_latent=False):
|
192 |
+
x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T)
|
193 |
+
|
194 |
+
out1 = self.layer1(x)
|
195 |
+
out2 = self.layer2(out1)
|
196 |
+
out3 = self.layer3(out2)
|
197 |
+
out4 = self.layer4(out3)
|
198 |
+
|
199 |
+
out = torch.cat([out2, out3, out4], dim=1)
|
200 |
+
latent = F.relu(self.conv(out))
|
201 |
+
out = self.bn(self.pool(latent))
|
202 |
+
out = self.linear(out)
|
203 |
+
if self.emb_bn:
|
204 |
+
out = self.bn2(out)
|
205 |
+
|
206 |
+
if return_latent:
|
207 |
+
return out, latent
|
208 |
+
return out
|
209 |
+
|
210 |
+
|
211 |
+
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
|
212 |
+
return ECAPA_TDNN(
|
213 |
+
channels=1024,
|
214 |
+
feat_dim=feat_dim,
|
215 |
+
embed_dim=embed_dim,
|
216 |
+
pooling_func=pooling_func,
|
217 |
+
emb_bn=emb_bn,
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
|
222 |
+
return ECAPA_TDNN(
|
223 |
+
channels=1024,
|
224 |
+
feat_dim=feat_dim,
|
225 |
+
embed_dim=embed_dim,
|
226 |
+
pooling_func=pooling_func,
|
227 |
+
global_context_att=True,
|
228 |
+
emb_bn=emb_bn,
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
|
233 |
+
return ECAPA_TDNN(
|
234 |
+
channels=512,
|
235 |
+
feat_dim=feat_dim,
|
236 |
+
embed_dim=embed_dim,
|
237 |
+
pooling_func=pooling_func,
|
238 |
+
emb_bn=emb_bn,
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
|
243 |
+
return ECAPA_TDNN(
|
244 |
+
channels=512,
|
245 |
+
feat_dim=feat_dim,
|
246 |
+
embed_dim=embed_dim,
|
247 |
+
pooling_func=pooling_func,
|
248 |
+
global_context_att=True,
|
249 |
+
emb_bn=emb_bn,
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
x = torch.zeros(1, 200, 100)
|
255 |
+
model = ECAPA_TDNN_GLOB_c512(feat_dim=100, embed_dim=256, pooling_func="ASTP")
|
256 |
+
model.eval()
|
257 |
+
out, latent = model(x, True)
|
258 |
+
print(out.shape)
|
259 |
+
print(latent.shape)
|
260 |
+
|
261 |
+
num_params = sum(param.numel() for param in model.parameters())
|
262 |
+
print("{} M".format(num_params / 1e6))
|
263 |
+
|
264 |
+
# from thop import profile
|
265 |
+
# x_np = torch.randn(1, 200, 80)
|
266 |
+
# flops, params = profile(model, inputs=(x_np, ))
|
267 |
+
# print("FLOPs: {} G, Params: {} M".format(flops / 1e9, params / 1e6))
|
sparktts/modules/speaker/perceiver_encoder.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Adapted from https://github.com/lucidrains/naturalspeech2-pytorch/blob/659bec7f7543e7747e809e950cc2f84242fbeec7/naturalspeech2_pytorch/naturalspeech2_pytorch.py#L532
|
17 |
+
|
18 |
+
from collections import namedtuple
|
19 |
+
from functools import wraps
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from einops import rearrange, repeat
|
24 |
+
from einops.layers.torch import Rearrange
|
25 |
+
from packaging import version
|
26 |
+
from torch import einsum, nn
|
27 |
+
|
28 |
+
|
29 |
+
def exists(val):
|
30 |
+
return val is not None
|
31 |
+
|
32 |
+
|
33 |
+
def once(fn):
|
34 |
+
called = False
|
35 |
+
|
36 |
+
@wraps(fn)
|
37 |
+
def inner(x):
|
38 |
+
nonlocal called
|
39 |
+
if called:
|
40 |
+
return
|
41 |
+
called = True
|
42 |
+
return fn(x)
|
43 |
+
|
44 |
+
return inner
|
45 |
+
|
46 |
+
|
47 |
+
print_once = once(print)
|
48 |
+
|
49 |
+
# main class
|
50 |
+
|
51 |
+
|
52 |
+
class Attend(nn.Module):
|
53 |
+
def __init__(self, dropout=0.0, causal=False, use_flash=False):
|
54 |
+
super().__init__()
|
55 |
+
self.dropout = dropout
|
56 |
+
self.attn_dropout = nn.Dropout(dropout)
|
57 |
+
|
58 |
+
self.causal = causal
|
59 |
+
self.register_buffer("mask", None, persistent=False)
|
60 |
+
|
61 |
+
self.use_flash = use_flash
|
62 |
+
assert not (
|
63 |
+
use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
|
64 |
+
), "in order to use flash attention, you must be using pytorch 2.0 or above"
|
65 |
+
|
66 |
+
# determine efficient attention configs for cuda and cpu
|
67 |
+
self.config = namedtuple(
|
68 |
+
"EfficientAttentionConfig",
|
69 |
+
["enable_flash", "enable_math", "enable_mem_efficient"],
|
70 |
+
)
|
71 |
+
self.cpu_config = self.config(True, True, True)
|
72 |
+
self.cuda_config = None
|
73 |
+
|
74 |
+
if not torch.cuda.is_available() or not use_flash:
|
75 |
+
return
|
76 |
+
|
77 |
+
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
|
78 |
+
|
79 |
+
if device_properties.major == 8 and device_properties.minor == 0:
|
80 |
+
print_once(
|
81 |
+
"A100 GPU detected, using flash attention if input tensor is on cuda"
|
82 |
+
)
|
83 |
+
self.cuda_config = self.config(True, False, False)
|
84 |
+
else:
|
85 |
+
print_once(
|
86 |
+
"Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda"
|
87 |
+
)
|
88 |
+
self.cuda_config = self.config(False, True, True)
|
89 |
+
|
90 |
+
def get_mask(self, n, device):
|
91 |
+
if exists(self.mask) and self.mask.shape[-1] >= n:
|
92 |
+
return self.mask[:n, :n]
|
93 |
+
|
94 |
+
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
|
95 |
+
self.register_buffer("mask", mask, persistent=False)
|
96 |
+
return mask
|
97 |
+
|
98 |
+
def flash_attn(self, q, k, v, mask=None):
|
99 |
+
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
|
100 |
+
|
101 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
102 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
103 |
+
|
104 |
+
if k.ndim == 3:
|
105 |
+
k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
|
106 |
+
|
107 |
+
if v.ndim == 3:
|
108 |
+
v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
|
109 |
+
|
110 |
+
# Check if mask exists and expand to compatible shape
|
111 |
+
# The mask is B L, so it would have to be expanded to B H N L
|
112 |
+
|
113 |
+
if exists(mask):
|
114 |
+
mask = rearrange(mask, "b j -> b 1 1 j")
|
115 |
+
mask = mask.expand(-1, heads, q_len, -1)
|
116 |
+
|
117 |
+
# Check if there is a compatible device for flash attention
|
118 |
+
|
119 |
+
config = self.cuda_config if is_cuda else self.cpu_config
|
120 |
+
|
121 |
+
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
|
122 |
+
|
123 |
+
with torch.backends.cuda.sdp_kernel(**config._asdict()):
|
124 |
+
out = F.scaled_dot_product_attention(
|
125 |
+
q,
|
126 |
+
k,
|
127 |
+
v,
|
128 |
+
attn_mask=mask,
|
129 |
+
dropout_p=self.dropout if self.training else 0.0,
|
130 |
+
is_causal=self.causal,
|
131 |
+
)
|
132 |
+
|
133 |
+
return out
|
134 |
+
|
135 |
+
def forward(self, q, k, v, mask=None):
|
136 |
+
"""
|
137 |
+
einstein notation
|
138 |
+
b - batch
|
139 |
+
h - heads
|
140 |
+
n, i, j - sequence length (base sequence length, source, target)
|
141 |
+
d - feature dimension
|
142 |
+
"""
|
143 |
+
|
144 |
+
n, device = q.shape[-2], q.device
|
145 |
+
|
146 |
+
scale = q.shape[-1] ** -0.5
|
147 |
+
|
148 |
+
if self.use_flash:
|
149 |
+
return self.flash_attn(q, k, v, mask=mask)
|
150 |
+
|
151 |
+
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
|
152 |
+
|
153 |
+
# similarity
|
154 |
+
|
155 |
+
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
|
156 |
+
|
157 |
+
# key padding mask
|
158 |
+
|
159 |
+
if exists(mask):
|
160 |
+
mask = rearrange(mask, "b j -> b 1 1 j")
|
161 |
+
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
|
162 |
+
|
163 |
+
# causal mask
|
164 |
+
|
165 |
+
if self.causal:
|
166 |
+
causal_mask = self.get_mask(n, device)
|
167 |
+
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
|
168 |
+
|
169 |
+
# attention
|
170 |
+
|
171 |
+
attn = sim.softmax(dim=-1)
|
172 |
+
attn = self.attn_dropout(attn)
|
173 |
+
|
174 |
+
# aggregate values
|
175 |
+
|
176 |
+
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
|
177 |
+
|
178 |
+
return out
|
179 |
+
|
180 |
+
|
181 |
+
def Sequential(*mods):
|
182 |
+
return nn.Sequential(*filter(exists, mods))
|
183 |
+
|
184 |
+
|
185 |
+
def exists(x):
|
186 |
+
return x is not None
|
187 |
+
|
188 |
+
|
189 |
+
def default(val, d):
|
190 |
+
if exists(val):
|
191 |
+
return val
|
192 |
+
return d() if callable(d) else d
|
193 |
+
|
194 |
+
|
195 |
+
class RMSNorm(nn.Module):
|
196 |
+
def __init__(self, dim, scale=True, dim_cond=None):
|
197 |
+
super().__init__()
|
198 |
+
self.cond = exists(dim_cond)
|
199 |
+
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
|
200 |
+
|
201 |
+
self.scale = dim**0.5
|
202 |
+
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
|
203 |
+
|
204 |
+
def forward(self, x, cond=None):
|
205 |
+
gamma = default(self.gamma, 1)
|
206 |
+
out = F.normalize(x, dim=-1) * self.scale * gamma
|
207 |
+
|
208 |
+
if not self.cond:
|
209 |
+
return out
|
210 |
+
|
211 |
+
assert exists(cond)
|
212 |
+
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
|
213 |
+
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
|
214 |
+
return out * gamma + beta
|
215 |
+
|
216 |
+
|
217 |
+
class CausalConv1d(nn.Conv1d):
|
218 |
+
def __init__(self, *args, **kwargs):
|
219 |
+
super().__init__(*args, **kwargs)
|
220 |
+
(kernel_size,) = self.kernel_size
|
221 |
+
(dilation,) = self.dilation
|
222 |
+
(stride,) = self.stride
|
223 |
+
|
224 |
+
assert stride == 1
|
225 |
+
self.causal_padding = dilation * (kernel_size - 1)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
229 |
+
return super().forward(causal_padded_x)
|
230 |
+
|
231 |
+
|
232 |
+
class GEGLU(nn.Module):
|
233 |
+
def forward(self, x):
|
234 |
+
x, gate = x.chunk(2, dim=-1)
|
235 |
+
return F.gelu(gate) * x
|
236 |
+
|
237 |
+
|
238 |
+
def FeedForward(dim, mult=4, causal_conv=False):
|
239 |
+
dim_inner = int(dim * mult * 2 / 3)
|
240 |
+
|
241 |
+
conv = None
|
242 |
+
if causal_conv:
|
243 |
+
conv = nn.Sequential(
|
244 |
+
Rearrange("b n d -> b d n"),
|
245 |
+
CausalConv1d(dim_inner, dim_inner, 3),
|
246 |
+
Rearrange("b d n -> b n d"),
|
247 |
+
)
|
248 |
+
|
249 |
+
return Sequential(
|
250 |
+
nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim)
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
class Attention(nn.Module):
|
255 |
+
def __init__(
|
256 |
+
self,
|
257 |
+
dim,
|
258 |
+
*,
|
259 |
+
dim_context=None,
|
260 |
+
causal=False,
|
261 |
+
dim_head=64,
|
262 |
+
heads=8,
|
263 |
+
dropout=0.0,
|
264 |
+
use_flash=False,
|
265 |
+
cross_attn_include_queries=False,
|
266 |
+
):
|
267 |
+
super().__init__()
|
268 |
+
self.scale = dim_head**-0.5
|
269 |
+
self.heads = heads
|
270 |
+
self.cross_attn_include_queries = cross_attn_include_queries
|
271 |
+
|
272 |
+
dim_inner = dim_head * heads
|
273 |
+
dim_context = default(dim_context, dim)
|
274 |
+
|
275 |
+
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
|
276 |
+
self.to_q = nn.Linear(dim, dim_inner, bias=False)
|
277 |
+
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
|
278 |
+
self.to_out = nn.Linear(dim_inner, dim, bias=False)
|
279 |
+
|
280 |
+
def forward(self, x, context=None, mask=None):
|
281 |
+
h, has_context = self.heads, exists(context)
|
282 |
+
|
283 |
+
context = default(context, x)
|
284 |
+
|
285 |
+
if has_context and self.cross_attn_include_queries:
|
286 |
+
context = torch.cat((x, context), dim=-2)
|
287 |
+
|
288 |
+
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
|
289 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
290 |
+
|
291 |
+
out = self.attend(q, k, v, mask=mask)
|
292 |
+
|
293 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
294 |
+
return self.to_out(out)
|
295 |
+
|
296 |
+
|
297 |
+
class PerceiverResampler(nn.Module):
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
*,
|
301 |
+
dim,
|
302 |
+
depth=2,
|
303 |
+
dim_context=None,
|
304 |
+
num_latents=32,
|
305 |
+
dim_head=64,
|
306 |
+
heads=8,
|
307 |
+
ff_mult=4,
|
308 |
+
use_flash_attn=False,
|
309 |
+
):
|
310 |
+
super().__init__()
|
311 |
+
dim_context = default(dim_context, dim)
|
312 |
+
|
313 |
+
self.proj_context = (
|
314 |
+
nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
|
315 |
+
)
|
316 |
+
|
317 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
318 |
+
nn.init.normal_(self.latents, std=0.02)
|
319 |
+
|
320 |
+
self.layers = nn.ModuleList([])
|
321 |
+
for _ in range(depth):
|
322 |
+
self.layers.append(
|
323 |
+
nn.ModuleList(
|
324 |
+
[
|
325 |
+
Attention(
|
326 |
+
dim=dim,
|
327 |
+
dim_head=dim_head,
|
328 |
+
heads=heads,
|
329 |
+
use_flash=use_flash_attn,
|
330 |
+
cross_attn_include_queries=True,
|
331 |
+
),
|
332 |
+
FeedForward(dim=dim, mult=ff_mult),
|
333 |
+
]
|
334 |
+
)
|
335 |
+
)
|
336 |
+
|
337 |
+
self.norm = RMSNorm(dim)
|
338 |
+
|
339 |
+
def forward(self, x, mask=None):
|
340 |
+
batch = x.shape[0]
|
341 |
+
|
342 |
+
x = self.proj_context(x)
|
343 |
+
|
344 |
+
latents = repeat(self.latents, "n d -> b n d", b=batch)
|
345 |
+
|
346 |
+
for attn, ff in self.layers:
|
347 |
+
latents = attn(latents, x, mask=mask) + latents
|
348 |
+
latents = ff(latents) + latents
|
349 |
+
|
350 |
+
return self.norm(latents)
|
351 |
+
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
model = PerceiverResampler(dim=256, dim_context=80)
|
355 |
+
x = torch.randn(8, 200, 80)
|
356 |
+
out = model(x)
|
357 |
+
print(out.shape) # [8, 32, 80]
|
358 |
+
|
359 |
+
num_params = sum(param.numel() for param in model.parameters())
|
360 |
+
print("{} M".format(num_params / 1e6))
|
sparktts/modules/speaker/pooling_layers.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Shuai Wang (wsstriving@gmail.com)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Pooling functions to aggregate frame-level deep features
|
16 |
+
into segment-level speaker embeddings
|
17 |
+
|
18 |
+
High-order statistics are surprisingly effective, TSDP acts similarly as TSTP,
|
19 |
+
even though we remove the mean statistic, on Voxceleb.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.nn.functional as F
|
25 |
+
|
26 |
+
|
27 |
+
class TAP(nn.Module):
|
28 |
+
"""
|
29 |
+
Temporal average pooling, only first-order mean is considered
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, in_dim=0, **kwargs):
|
33 |
+
super(TAP, self).__init__()
|
34 |
+
self.in_dim = in_dim
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
pooling_mean = x.mean(dim=-1)
|
38 |
+
# To be compatable with 2D input
|
39 |
+
pooling_mean = pooling_mean.flatten(start_dim=1)
|
40 |
+
return pooling_mean
|
41 |
+
|
42 |
+
def get_out_dim(self):
|
43 |
+
self.out_dim = self.in_dim
|
44 |
+
return self.out_dim
|
45 |
+
|
46 |
+
|
47 |
+
class TSDP(nn.Module):
|
48 |
+
"""
|
49 |
+
Temporal standard deviation pooling, only second-order std is considered
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, in_dim=0, **kwargs):
|
53 |
+
super(TSDP, self).__init__()
|
54 |
+
self.in_dim = in_dim
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
# The last dimension is the temporal axis
|
58 |
+
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
|
59 |
+
pooling_std = pooling_std.flatten(start_dim=1)
|
60 |
+
return pooling_std
|
61 |
+
|
62 |
+
def get_out_dim(self):
|
63 |
+
self.out_dim = self.in_dim
|
64 |
+
return self.out_dim
|
65 |
+
|
66 |
+
|
67 |
+
class TSTP(nn.Module):
|
68 |
+
"""
|
69 |
+
Temporal statistics pooling, concatenate mean and std, which is used in
|
70 |
+
x-vector
|
71 |
+
Comment: simple concatenation can not make full use of both statistics
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(self, in_dim=0, **kwargs):
|
75 |
+
super(TSTP, self).__init__()
|
76 |
+
self.in_dim = in_dim
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
# The last dimension is the temporal axis
|
80 |
+
pooling_mean = x.mean(dim=-1)
|
81 |
+
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
|
82 |
+
pooling_mean = pooling_mean.flatten(start_dim=1)
|
83 |
+
pooling_std = pooling_std.flatten(start_dim=1)
|
84 |
+
stats = torch.cat((pooling_mean, pooling_std), 1)
|
85 |
+
return stats
|
86 |
+
|
87 |
+
def get_out_dim(self):
|
88 |
+
self.out_dim = self.in_dim * 2
|
89 |
+
return self.out_dim
|
90 |
+
|
91 |
+
|
92 |
+
class ASTP(nn.Module):
|
93 |
+
""" Attentive statistics pooling: Channel- and context-dependent
|
94 |
+
statistics pooling, first used in ECAPA_TDNN.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self,
|
98 |
+
in_dim,
|
99 |
+
bottleneck_dim=128,
|
100 |
+
global_context_att=False,
|
101 |
+
**kwargs):
|
102 |
+
super(ASTP, self).__init__()
|
103 |
+
self.in_dim = in_dim
|
104 |
+
self.global_context_att = global_context_att
|
105 |
+
|
106 |
+
# Use Conv1d with stride == 1 rather than Linear, then we don't
|
107 |
+
# need to transpose inputs.
|
108 |
+
if global_context_att:
|
109 |
+
self.linear1 = nn.Conv1d(
|
110 |
+
in_dim * 3, bottleneck_dim,
|
111 |
+
kernel_size=1) # equals W and b in the paper
|
112 |
+
else:
|
113 |
+
self.linear1 = nn.Conv1d(
|
114 |
+
in_dim, bottleneck_dim,
|
115 |
+
kernel_size=1) # equals W and b in the paper
|
116 |
+
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim,
|
117 |
+
kernel_size=1) # equals V and k in the paper
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
"""
|
121 |
+
x: a 3-dimensional tensor in tdnn-based architecture (B,F,T)
|
122 |
+
or a 4-dimensional tensor in resnet architecture (B,C,F,T)
|
123 |
+
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
|
124 |
+
"""
|
125 |
+
if len(x.shape) == 4:
|
126 |
+
x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3])
|
127 |
+
assert len(x.shape) == 3
|
128 |
+
|
129 |
+
if self.global_context_att:
|
130 |
+
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
131 |
+
context_std = torch.sqrt(
|
132 |
+
torch.var(x, dim=-1, keepdim=True) + 1e-7).expand_as(x)
|
133 |
+
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
134 |
+
else:
|
135 |
+
x_in = x
|
136 |
+
|
137 |
+
# DON'T use ReLU here! ReLU may be hard to converge.
|
138 |
+
alpha = torch.tanh(
|
139 |
+
self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in))
|
140 |
+
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
141 |
+
mean = torch.sum(alpha * x, dim=2)
|
142 |
+
var = torch.sum(alpha * (x**2), dim=2) - mean**2
|
143 |
+
std = torch.sqrt(var.clamp(min=1e-7))
|
144 |
+
return torch.cat([mean, std], dim=1)
|
145 |
+
|
146 |
+
def get_out_dim(self):
|
147 |
+
self.out_dim = 2 * self.in_dim
|
148 |
+
return self.out_dim
|
149 |
+
|
150 |
+
|
151 |
+
class MHASTP(torch.nn.Module):
|
152 |
+
""" Multi head attentive statistics pooling
|
153 |
+
Reference:
|
154 |
+
Self Multi-Head Attention for Speaker Recognition
|
155 |
+
https://arxiv.org/pdf/1906.09890.pdf
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self,
|
159 |
+
in_dim,
|
160 |
+
layer_num=2,
|
161 |
+
head_num=2,
|
162 |
+
d_s=1,
|
163 |
+
bottleneck_dim=64,
|
164 |
+
**kwargs):
|
165 |
+
super(MHASTP, self).__init__()
|
166 |
+
assert (in_dim % head_num
|
167 |
+
) == 0 # make sure that head num can be divided by input_dim
|
168 |
+
self.in_dim = in_dim
|
169 |
+
self.head_num = head_num
|
170 |
+
d_model = int(in_dim / head_num)
|
171 |
+
channel_dims = [bottleneck_dim for i in range(layer_num + 1)]
|
172 |
+
if d_s > 1:
|
173 |
+
d_s = d_model
|
174 |
+
else:
|
175 |
+
d_s = 1
|
176 |
+
self.d_s = d_s
|
177 |
+
channel_dims[0], channel_dims[-1] = d_model, d_s
|
178 |
+
heads_att_trans = []
|
179 |
+
for i in range(self.head_num):
|
180 |
+
att_trans = nn.Sequential()
|
181 |
+
for i in range(layer_num - 1):
|
182 |
+
att_trans.add_module(
|
183 |
+
'att_' + str(i),
|
184 |
+
nn.Conv1d(channel_dims[i], channel_dims[i + 1], 1, 1))
|
185 |
+
att_trans.add_module('tanh' + str(i), nn.Tanh())
|
186 |
+
att_trans.add_module(
|
187 |
+
'att_' + str(layer_num - 1),
|
188 |
+
nn.Conv1d(channel_dims[layer_num - 1], channel_dims[layer_num],
|
189 |
+
1, 1))
|
190 |
+
heads_att_trans.append(att_trans)
|
191 |
+
self.heads_att_trans = nn.ModuleList(heads_att_trans)
|
192 |
+
|
193 |
+
def forward(self, input):
|
194 |
+
"""
|
195 |
+
input: a 3-dimensional tensor in xvector architecture
|
196 |
+
or a 4-dimensional tensor in resnet architecture
|
197 |
+
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
|
198 |
+
"""
|
199 |
+
if len(input.shape) == 4: # B x F x T
|
200 |
+
input = input.reshape(input.shape[0],
|
201 |
+
input.shape[1] * input.shape[2],
|
202 |
+
input.shape[3])
|
203 |
+
assert len(input.shape) == 3
|
204 |
+
bs, f_dim, t_dim = input.shape
|
205 |
+
chunks = torch.chunk(input, self.head_num, 1)
|
206 |
+
# split
|
207 |
+
chunks_out = []
|
208 |
+
# for i in range(self.head_num):
|
209 |
+
# att_score = self.heads_att_trans[i](chunks[i])
|
210 |
+
for i, layer in enumerate(self.heads_att_trans):
|
211 |
+
att_score = layer(chunks[i])
|
212 |
+
alpha = F.softmax(att_score, dim=-1)
|
213 |
+
mean = torch.sum(alpha * chunks[i], dim=2)
|
214 |
+
var = torch.sum(alpha * chunks[i]**2, dim=2) - mean**2
|
215 |
+
std = torch.sqrt(var.clamp(min=1e-7))
|
216 |
+
chunks_out.append(torch.cat((mean, std), dim=1))
|
217 |
+
out = torch.cat(chunks_out, dim=1)
|
218 |
+
return out
|
219 |
+
|
220 |
+
def get_out_dim(self):
|
221 |
+
self.out_dim = 2 * self.in_dim
|
222 |
+
return self.out_dim
|
223 |
+
|
224 |
+
|
225 |
+
class MQMHASTP(torch.nn.Module):
|
226 |
+
""" An attentive pooling
|
227 |
+
Reference:
|
228 |
+
multi query multi head attentive statistics pooling
|
229 |
+
https://arxiv.org/pdf/2110.05042.pdf
|
230 |
+
Args:
|
231 |
+
in_dim: the feature dimension of input
|
232 |
+
layer_num: the number of layer in the pooling layer
|
233 |
+
query_num: the number of querys
|
234 |
+
head_num: the number of heads
|
235 |
+
bottleneck_dim: the bottleneck dimension
|
236 |
+
|
237 |
+
SA (H = 1, Q = 1, n = 2, d_s = 1) ref:
|
238 |
+
https://www.danielpovey.com/files/2018_interspeech_xvector_attention.pdf
|
239 |
+
MHA (H > 1, Q = 1, n = 1, d_s = 1) ref:
|
240 |
+
https://arxiv.org/pdf/1906.09890.pdf
|
241 |
+
AS (H = 1, Q > 1, n = 2, d_s = 1) ref:
|
242 |
+
https://arxiv.org/pdf/1803.10963.pdf
|
243 |
+
VSA (H = 1, Q > 1, n = 2, d_s = d_h) ref:
|
244 |
+
http://www.interspeech2020.org/uploadfile/pdf/Mon-2-10-5.pdf
|
245 |
+
"""
|
246 |
+
|
247 |
+
def __init__(self,
|
248 |
+
in_dim,
|
249 |
+
layer_num=2,
|
250 |
+
query_num=2,
|
251 |
+
head_num=8,
|
252 |
+
d_s=2,
|
253 |
+
bottleneck_dim=64,
|
254 |
+
**kwargs):
|
255 |
+
super(MQMHASTP, self).__init__()
|
256 |
+
self.n_query = nn.ModuleList([
|
257 |
+
MHASTP(in_dim,
|
258 |
+
layer_num=layer_num,
|
259 |
+
head_num=head_num,
|
260 |
+
d_s=d_s,
|
261 |
+
bottleneck_dim=bottleneck_dim) for i in range(query_num)
|
262 |
+
])
|
263 |
+
self.query_num = query_num
|
264 |
+
self.in_dim = in_dim
|
265 |
+
|
266 |
+
def forward(self, input):
|
267 |
+
"""
|
268 |
+
input: a 3-dimensional tensor in xvector architecture
|
269 |
+
or a 4-dimensional tensor in resnet architecture
|
270 |
+
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
|
271 |
+
"""
|
272 |
+
if len(input.shape) == 4: # B x F x T
|
273 |
+
input = input.reshape(input.shape[0],
|
274 |
+
input.shape[1] * input.shape[2],
|
275 |
+
input.shape[3])
|
276 |
+
assert len(input.shape) == 3
|
277 |
+
res = []
|
278 |
+
for i, layer in enumerate(self.n_query):
|
279 |
+
res.append(layer(input))
|
280 |
+
out = torch.cat(res, dim=-1)
|
281 |
+
return out
|
282 |
+
|
283 |
+
def get_out_dim(self):
|
284 |
+
self.out_dim = self.in_dim * 2 * self.query_num
|
285 |
+
return self.out_dim
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == '__main__':
|
289 |
+
data = torch.randn(16, 512, 10, 35)
|
290 |
+
# model = StatisticsPooling()
|
291 |
+
model = MQMHASTP(512 * 10)
|
292 |
+
model = MHASTP(512 * 10)
|
293 |
+
model = MQMHASTP(512 * 10, context=False)
|
294 |
+
print(model)
|
295 |
+
|
296 |
+
out = model(data)
|
297 |
+
print(out.shape)
|
298 |
+
print(model.get_out_dim())
|
sparktts/modules/speaker/speaker_encoder.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from typing import List, Tuple
|
20 |
+
from sparktts.modules.fsq.residual_fsq import ResidualFSQ
|
21 |
+
from sparktts.modules.speaker.ecapa_tdnn import ECAPA_TDNN_GLOB_c512
|
22 |
+
from sparktts.modules.speaker.perceiver_encoder import PerceiverResampler
|
23 |
+
|
24 |
+
"""
|
25 |
+
x-vector + d-vector
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
class SpeakerEncoder(nn.Module):
|
30 |
+
"""
|
31 |
+
|
32 |
+
Args:
|
33 |
+
input_dim (int): acoustic feature dimension
|
34 |
+
out_dim (int): output dimension of x-vector and d-vector
|
35 |
+
latent_dim (int): latent dimension before quantization
|
36 |
+
token_num (int): sequence length of speaker tokens
|
37 |
+
fsq_levels (List[int]): number of levels for each quantizer
|
38 |
+
fsq_num_quantizers (int): number of quantizers
|
39 |
+
|
40 |
+
Return:
|
41 |
+
speaker_embs: (B, T2, out_dim)
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
input_dim: int = 100,
|
47 |
+
out_dim: int = 512,
|
48 |
+
latent_dim: int = 128,
|
49 |
+
token_num: int = 32,
|
50 |
+
fsq_levels: List[int] = [4, 4, 4, 4, 4, 4],
|
51 |
+
fsq_num_quantizers: int = 1,
|
52 |
+
):
|
53 |
+
super(SpeakerEncoder, self).__init__()
|
54 |
+
|
55 |
+
self.speaker_encoder = ECAPA_TDNN_GLOB_c512(
|
56 |
+
feat_dim=input_dim, embed_dim=out_dim
|
57 |
+
)
|
58 |
+
self.perceiver_sampler = PerceiverResampler(
|
59 |
+
dim=latent_dim, dim_context=512 * 3, num_latents=token_num
|
60 |
+
)
|
61 |
+
self.quantizer = ResidualFSQ(
|
62 |
+
levels=fsq_levels,
|
63 |
+
num_quantizers=fsq_num_quantizers,
|
64 |
+
dim=latent_dim,
|
65 |
+
is_channel_first=True,
|
66 |
+
quantize_dropout=False,
|
67 |
+
)
|
68 |
+
|
69 |
+
self.project = nn.Linear(latent_dim * token_num, out_dim)
|
70 |
+
|
71 |
+
def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor:
|
72 |
+
zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2))
|
73 |
+
return zq.transpose(1, 2)
|
74 |
+
|
75 |
+
def get_indices(self, mels: torch.Tensor) -> torch.Tensor:
|
76 |
+
mels = mels.transpose(1, 2)
|
77 |
+
x = self.perceiver_sampler(mels).transpose(1, 2)
|
78 |
+
zq, indices = self.quantizer(x)
|
79 |
+
return indices
|
80 |
+
|
81 |
+
def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
82 |
+
"""
|
83 |
+
Args:
|
84 |
+
mels: (B, D_mel, T1)
|
85 |
+
|
86 |
+
Return:
|
87 |
+
x_vector: (B, out_dim)
|
88 |
+
d_vector: (B, out_dim)
|
89 |
+
"""
|
90 |
+
# mels = mels.transpose(1,2)
|
91 |
+
|
92 |
+
x_vector, features = self.speaker_encoder(mels, True)
|
93 |
+
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
|
94 |
+
zq, indices = self.quantizer(x) # zq: (B, latent_dim, T2, latent_dim)
|
95 |
+
x = zq.reshape(zq.shape[0], -1)
|
96 |
+
d_vector = self.project(x)
|
97 |
+
|
98 |
+
return x_vector, d_vector
|
99 |
+
|
100 |
+
def tokenize(self, mels: torch.Tensor) -> torch.Tensor:
|
101 |
+
"""tokenize the input mel spectrogram"""
|
102 |
+
_, features = self.speaker_encoder(mels, True)
|
103 |
+
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
|
104 |
+
zq, indices = self.quantizer(x)
|
105 |
+
return indices
|
106 |
+
|
107 |
+
def detokenize(self, indices: torch.Tensor) -> torch.Tensor:
|
108 |
+
"""detokenize the input indices to d-vector"""
|
109 |
+
zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2)
|
110 |
+
x = zq.reshape(zq.shape[0], -1)
|
111 |
+
d_vector = self.project(x)
|
112 |
+
return d_vector
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
model = SpeakerEncoder(
|
116 |
+
input_dim=100,
|
117 |
+
latent_dim=128,
|
118 |
+
token_num=32,
|
119 |
+
fsq_levels=[4, 4, 4, 4, 4, 4],
|
120 |
+
fsq_num_quantizers=1,
|
121 |
+
)
|
122 |
+
mel = torch.randn(8, 200, 100)
|
123 |
+
x_vector, d_vector = model(mel)
|
124 |
+
print("x-vector shape", x_vector.shape)
|
125 |
+
print("d-vector shape", d_vector.shape)
|
126 |
+
|
127 |
+
indices = model.tokenize(mel)
|
128 |
+
print("indices shape", indices.shape)
|
129 |
+
d_vector_post = model.detokenize(indices)
|
130 |
+
print("d-vector shape", d_vector_post.shape)
|
131 |
+
if d_vector_post.all() == d_vector.all():
|
132 |
+
print("d-vector post and d-vector are the same")
|
133 |
+
else:
|
134 |
+
print("d-vector post and d-vector are different")
|
135 |
+
num_params = sum(param.numel() for param in model.parameters())
|
136 |
+
print("{} M".format(num_params / 1e6))
|
sparktts/modules/vq/factorized_vector_quantize.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Heavily based on https://github.com/lucidrains/vector-quantize-pytorch
|
17 |
+
|
18 |
+
|
19 |
+
from typing import Any, Dict
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from einops import rearrange
|
25 |
+
from torch.nn.utils import weight_norm
|
26 |
+
|
27 |
+
|
28 |
+
def WNConv1d(*args, **kwargs):
|
29 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
30 |
+
|
31 |
+
|
32 |
+
def ema_inplace(moving_avg, new, decay):
|
33 |
+
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
34 |
+
|
35 |
+
|
36 |
+
class FactorizedVectorQuantize(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
input_dim: int,
|
40 |
+
codebook_size: int,
|
41 |
+
codebook_dim: int,
|
42 |
+
commitment: float,
|
43 |
+
codebook_loss_weight: float = 1.0,
|
44 |
+
decay: float = 0.99,
|
45 |
+
threshold_ema_dead_code: float = 2,
|
46 |
+
momentum: float = 0.99,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.input_dim = input_dim
|
51 |
+
self.codebook_size = codebook_size
|
52 |
+
self.codebook_dim = codebook_dim
|
53 |
+
self.commitment = commitment
|
54 |
+
self.codebook_loss_weight = codebook_loss_weight
|
55 |
+
self.decay = decay
|
56 |
+
self.threshold_ema_dead_code = threshold_ema_dead_code
|
57 |
+
self.momentum = momentum
|
58 |
+
|
59 |
+
if input_dim != self.codebook_dim:
|
60 |
+
self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1)
|
61 |
+
self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1)
|
62 |
+
|
63 |
+
else:
|
64 |
+
self.in_project = nn.Identity()
|
65 |
+
self.out_project = nn.Identity()
|
66 |
+
|
67 |
+
self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim)
|
68 |
+
self.register_buffer("cluster_size", torch.zeros(self.codebook_size))
|
69 |
+
|
70 |
+
def forward(self, z: torch.Tensor) -> Dict[str, Any]:
|
71 |
+
"""Quantized the input tensor using a fixed codebook and returns
|
72 |
+
the corresponding codebook vectors
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
z : Tensor[B x D x T]
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
Tensor[B x D x T]
|
81 |
+
Quantized continuous representation of input
|
82 |
+
Tensor[1]
|
83 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
84 |
+
entries
|
85 |
+
Tensor[1]
|
86 |
+
Codebook loss to update the codebook
|
87 |
+
Tensor[B x T]
|
88 |
+
Codebook indices (quantized discrete representation of input)
|
89 |
+
Tensor[B x D x T]
|
90 |
+
Projected latents (continuous representation of input before quantization)
|
91 |
+
"""
|
92 |
+
# transpose since we use linear
|
93 |
+
|
94 |
+
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim
|
95 |
+
z_e = self.in_project(z)
|
96 |
+
z_q, indices, dists = self.decode_latents(z_e)
|
97 |
+
|
98 |
+
# statistic the usage of codes
|
99 |
+
embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype)
|
100 |
+
avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0)
|
101 |
+
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
|
102 |
+
|
103 |
+
active_num = (embed_onehot.sum(0).sum(0) > 0).sum()
|
104 |
+
if self.training:
|
105 |
+
# We do the expiry of code at that point as buffers are in sync
|
106 |
+
# and all the workers will take the same decision.
|
107 |
+
ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay)
|
108 |
+
active_num = sum(self.cluster_size > self.threshold_ema_dead_code)
|
109 |
+
|
110 |
+
if self.training:
|
111 |
+
commit_loss = (
|
112 |
+
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
|
113 |
+
* self.commitment
|
114 |
+
)
|
115 |
+
|
116 |
+
codebook_loss = (
|
117 |
+
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
|
118 |
+
* self.codebook_loss_weight
|
119 |
+
)
|
120 |
+
|
121 |
+
else:
|
122 |
+
commit_loss = torch.zeros(0, device=z.device)
|
123 |
+
codebook_loss = torch.zeros(0, device=z.device)
|
124 |
+
|
125 |
+
z_q = (
|
126 |
+
z_e + (z_q - z_e).detach()
|
127 |
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
128 |
+
|
129 |
+
z_q = self.out_project(z_q)
|
130 |
+
|
131 |
+
vq_loss = (commit_loss + codebook_loss).mean()
|
132 |
+
|
133 |
+
return {
|
134 |
+
"z_q": z_q,
|
135 |
+
"indices": indices,
|
136 |
+
"dists": dists,
|
137 |
+
"vq_loss": vq_loss,
|
138 |
+
"perplexity": perplexity,
|
139 |
+
"active_num": active_num.float(),
|
140 |
+
}
|
141 |
+
|
142 |
+
def vq2emb(self, vq, out_proj=True):
|
143 |
+
emb = self.embed_code(vq)
|
144 |
+
if out_proj:
|
145 |
+
emb = self.out_project(emb)
|
146 |
+
return emb
|
147 |
+
|
148 |
+
def tokenize(self, z: torch.Tensor) -> torch.Tensor:
|
149 |
+
"""tokenize the input tensor"""
|
150 |
+
z_e = self.in_project(z)
|
151 |
+
_, indices, _ = self.decode_latents(z_e)
|
152 |
+
return indices
|
153 |
+
|
154 |
+
def detokenize(self, indices):
|
155 |
+
"""detokenize the input indices"""
|
156 |
+
z_q = self.decode_code(indices)
|
157 |
+
z_q = self.out_project(z_q)
|
158 |
+
return z_q
|
159 |
+
|
160 |
+
def get_emb(self):
|
161 |
+
return self.codebook.weight
|
162 |
+
|
163 |
+
def embed_code(self, embed_id):
|
164 |
+
return F.embedding(embed_id, self.codebook.weight)
|
165 |
+
|
166 |
+
def decode_code(self, embed_id):
|
167 |
+
return self.embed_code(embed_id).transpose(1, 2)
|
168 |
+
|
169 |
+
def decode_latents(self, latents):
|
170 |
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
171 |
+
codebook = self.codebook.weight
|
172 |
+
|
173 |
+
# L2 normalize encodings and codebook
|
174 |
+
encodings = F.normalize(encodings)
|
175 |
+
codebook = F.normalize(codebook)
|
176 |
+
|
177 |
+
# Compute euclidean distance between encodings and codebook,
|
178 |
+
# with L2 normalization, the distance is equal to cosine distance
|
179 |
+
dist = (
|
180 |
+
encodings.pow(2).sum(1, keepdim=True)
|
181 |
+
- 2 * encodings @ codebook.t()
|
182 |
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
183 |
+
)
|
184 |
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
185 |
+
z_q = self.decode_code(indices)
|
186 |
+
|
187 |
+
return z_q, indices, dist
|
sparktts/utils/__init__.py
ADDED
File without changes
|
sparktts/utils/audio.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Description:
|
17 |
+
This script contains a collection of functions designed to handle various
|
18 |
+
audio processing.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import random
|
22 |
+
import soxr
|
23 |
+
import soundfile
|
24 |
+
import torch
|
25 |
+
import torchaudio
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
from pathlib import Path
|
29 |
+
from typing import Tuple
|
30 |
+
from numpy.lib.stride_tricks import sliding_window_view
|
31 |
+
|
32 |
+
|
33 |
+
def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
|
34 |
+
"""
|
35 |
+
Normalize the volume of an audio signal.
|
36 |
+
|
37 |
+
Parameters:
|
38 |
+
audio (numpy array): Input audio signal array.
|
39 |
+
coeff (float): Target coefficient for normalization, default is 0.2.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
numpy array: The volume-normalized audio signal.
|
43 |
+
"""
|
44 |
+
# Sort the absolute values of the audio signal
|
45 |
+
temp = np.sort(np.abs(audio))
|
46 |
+
|
47 |
+
# If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
|
48 |
+
if temp[-1] < 0.1:
|
49 |
+
scaling_factor = max(
|
50 |
+
temp[-1], 1e-3
|
51 |
+
) # Prevent division by zero with a small constant
|
52 |
+
audio = audio / scaling_factor * 0.1
|
53 |
+
|
54 |
+
# Filter out values less than 0.01 from temp
|
55 |
+
temp = temp[temp > 0.01]
|
56 |
+
L = temp.shape[0] # Length of the filtered array
|
57 |
+
|
58 |
+
# If there are fewer than or equal to 10 significant values, return the audio without further processing
|
59 |
+
if L <= 10:
|
60 |
+
return audio
|
61 |
+
|
62 |
+
# Compute the average of the top 10% to 1% of values in temp
|
63 |
+
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
|
64 |
+
|
65 |
+
# Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
|
66 |
+
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
|
67 |
+
|
68 |
+
# Ensure the maximum absolute value in the audio does not exceed 1
|
69 |
+
max_value = np.max(np.abs(audio))
|
70 |
+
if max_value > 1:
|
71 |
+
audio = audio / max_value
|
72 |
+
|
73 |
+
return audio
|
74 |
+
|
75 |
+
|
76 |
+
def load_audio(
|
77 |
+
adfile: Path,
|
78 |
+
sampling_rate: int = None,
|
79 |
+
length: int = None,
|
80 |
+
volume_normalize: bool = False,
|
81 |
+
segment_duration: int = None,
|
82 |
+
) -> np.ndarray:
|
83 |
+
r"""Load audio file with target sampling rate and lsength
|
84 |
+
|
85 |
+
Args:
|
86 |
+
adfile (Path): path to audio file.
|
87 |
+
sampling_rate (int, optional): target sampling rate. Defaults to None.
|
88 |
+
length (int, optional): target audio length. Defaults to None.
|
89 |
+
volume_normalize (bool, optional): whether perform volume normalization. Defaults to False.
|
90 |
+
segment_duration (int): random select a segment with duration of {segment_duration}s.
|
91 |
+
Defualt to None which means the whole audio will be used.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
audio (np.ndarray): audio
|
95 |
+
"""
|
96 |
+
|
97 |
+
audio, sr = soundfile.read(adfile)
|
98 |
+
if len(audio.shape) > 1:
|
99 |
+
audio = audio[:, 0]
|
100 |
+
|
101 |
+
if sampling_rate is not None and sr != sampling_rate:
|
102 |
+
audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ")
|
103 |
+
sr = sampling_rate
|
104 |
+
|
105 |
+
if segment_duration is not None:
|
106 |
+
seg_length = int(sr * segment_duration)
|
107 |
+
audio = random_select_audio_segment(audio, seg_length)
|
108 |
+
|
109 |
+
# Audio volume normalize
|
110 |
+
if volume_normalize:
|
111 |
+
audio = audio_volume_normalize(audio)
|
112 |
+
# check the audio length
|
113 |
+
if length is not None:
|
114 |
+
assert abs(audio.shape[0] - length) < 1000
|
115 |
+
if audio.shape[0] > length:
|
116 |
+
audio = audio[:length]
|
117 |
+
else:
|
118 |
+
audio = np.pad(audio, (0, int(length - audio.shape[0])))
|
119 |
+
return audio
|
120 |
+
|
121 |
+
|
122 |
+
def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray:
|
123 |
+
"""get an audio segment given the length
|
124 |
+
|
125 |
+
Args:
|
126 |
+
audio (np.ndarray):
|
127 |
+
length (int): audio length = sampling_rate * duration
|
128 |
+
"""
|
129 |
+
if audio.shape[0] < length:
|
130 |
+
audio = np.pad(audio, (0, int(length - audio.shape[0])))
|
131 |
+
start_index = random.randint(0, audio.shape[0] - length)
|
132 |
+
end_index = int(start_index + length)
|
133 |
+
|
134 |
+
return audio[start_index:end_index]
|
135 |
+
|
136 |
+
|
137 |
+
def audio_highpass_filter(audio, sample_rate, highpass_cutoff_freq):
|
138 |
+
"""apply highpass fileter to audio
|
139 |
+
|
140 |
+
Args:
|
141 |
+
audio (np.ndarray):
|
142 |
+
sample_rate (ind):
|
143 |
+
highpass_cutoff_freq (int):
|
144 |
+
"""
|
145 |
+
|
146 |
+
audio = torchaudio.functional.highpass_biquad(
|
147 |
+
torch.from_numpy(audio), sample_rate, cutoff_freq=highpass_cutoff_freq
|
148 |
+
)
|
149 |
+
return audio.numpy()
|
150 |
+
|
151 |
+
|
152 |
+
def stft(
|
153 |
+
x: torch.Tensor,
|
154 |
+
fft_size: int,
|
155 |
+
hop_size: int,
|
156 |
+
win_length: int,
|
157 |
+
window: str,
|
158 |
+
use_complex: bool = False,
|
159 |
+
) -> torch.Tensor:
|
160 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
161 |
+
Args:
|
162 |
+
x (Tensor): Input signal tensor (B, T).
|
163 |
+
fft_size (int): FFT size.
|
164 |
+
hop_size (int): Hop size.
|
165 |
+
win_length (int): Window length.
|
166 |
+
window (str): Window function type.
|
167 |
+
Returns:
|
168 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
169 |
+
"""
|
170 |
+
|
171 |
+
x_stft = torch.stft(
|
172 |
+
x, fft_size, hop_size, win_length, window.to(x.device), return_complex=True
|
173 |
+
)
|
174 |
+
|
175 |
+
# clamp is needed to avoid nan or inf
|
176 |
+
if not use_complex:
|
177 |
+
return torch.sqrt(
|
178 |
+
torch.clamp(x_stft.real**2 + x_stft.imag**2, min=1e-7, max=1e3)
|
179 |
+
).transpose(2, 1)
|
180 |
+
else:
|
181 |
+
res = torch.cat([x_stft.real.unsqueeze(1), x_stft.imag.unsqueeze(1)], dim=1)
|
182 |
+
res = res.transpose(2, 3) # [B, 2, T, F]
|
183 |
+
return res
|
184 |
+
|
185 |
+
|
186 |
+
def detect_speech_boundaries(
|
187 |
+
wav: np.ndarray,
|
188 |
+
sample_rate: int,
|
189 |
+
window_duration: float = 0.1,
|
190 |
+
energy_threshold: float = 0.01,
|
191 |
+
margin_factor: int = 2
|
192 |
+
) -> Tuple[int, int]:
|
193 |
+
"""Detect the start and end points of speech in an audio signal using RMS energy.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
wav: Input audio signal array with values in [-1, 1]
|
197 |
+
sample_rate: Audio sample rate in Hz
|
198 |
+
window_duration: Duration of detection window in seconds
|
199 |
+
energy_threshold: RMS energy threshold for speech detection
|
200 |
+
margin_factor: Factor to determine extra margin around detected boundaries
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
tuple: (start_index, end_index) of speech segment
|
204 |
+
|
205 |
+
Raises:
|
206 |
+
ValueError: If the audio contains only silence
|
207 |
+
"""
|
208 |
+
window_size = int(window_duration * sample_rate)
|
209 |
+
margin = margin_factor * window_size
|
210 |
+
step_size = window_size // 10
|
211 |
+
|
212 |
+
# Create sliding windows using stride tricks to avoid loops
|
213 |
+
windows = sliding_window_view(wav, window_size)[::step_size]
|
214 |
+
|
215 |
+
# Calculate RMS energy for each window
|
216 |
+
energy = np.sqrt(np.mean(windows ** 2, axis=1))
|
217 |
+
speech_mask = energy >= energy_threshold
|
218 |
+
|
219 |
+
if not np.any(speech_mask):
|
220 |
+
raise ValueError("No speech detected in audio (only silence)")
|
221 |
+
|
222 |
+
start = max(0, np.argmax(speech_mask) * step_size - margin)
|
223 |
+
end = min(len(wav), (len(speech_mask) - 1 - np.argmax(speech_mask[::-1])) * step_size + margin)
|
224 |
+
|
225 |
+
return start, end
|
226 |
+
|
227 |
+
|
228 |
+
def remove_silence_on_both_ends(
|
229 |
+
wav: np.ndarray,
|
230 |
+
sample_rate: int,
|
231 |
+
window_duration: float = 0.1,
|
232 |
+
volume_threshold: float = 0.01
|
233 |
+
) -> np.ndarray:
|
234 |
+
"""Remove silence from both ends of an audio signal.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
wav: Input audio signal array
|
238 |
+
sample_rate: Audio sample rate in Hz
|
239 |
+
window_duration: Duration of detection window in seconds
|
240 |
+
volume_threshold: Amplitude threshold for silence detection
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
np.ndarray: Audio signal with silence removed from both ends
|
244 |
+
|
245 |
+
Raises:
|
246 |
+
ValueError: If the audio contains only silence
|
247 |
+
"""
|
248 |
+
start, end = detect_speech_boundaries(
|
249 |
+
wav,
|
250 |
+
sample_rate,
|
251 |
+
window_duration,
|
252 |
+
volume_threshold
|
253 |
+
)
|
254 |
+
return wav[start:end]
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
def hertz_to_mel(pitch: float) -> float:
|
259 |
+
"""
|
260 |
+
Converts a frequency from the Hertz scale to the Mel scale.
|
261 |
+
|
262 |
+
Parameters:
|
263 |
+
- pitch: float or ndarray
|
264 |
+
Frequency in Hertz.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
- mel: float or ndarray
|
268 |
+
Frequency in Mel scale.
|
269 |
+
"""
|
270 |
+
mel = 2595 * np.log10(1 + pitch / 700)
|
271 |
+
return mel
|
sparktts/utils/file.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Description:
|
17 |
+
This script contains a collection of functions designed to handle various
|
18 |
+
file reading and writing operations. It provides utilities to read from files,
|
19 |
+
write data to files, and perform file manipulation tasks.
|
20 |
+
"""
|
21 |
+
|
22 |
+
|
23 |
+
import os
|
24 |
+
import json
|
25 |
+
import json
|
26 |
+
import csv
|
27 |
+
|
28 |
+
from tqdm import tqdm
|
29 |
+
from typing import List, Dict, Any, Set, Union
|
30 |
+
from pathlib import Path
|
31 |
+
from omegaconf import OmegaConf, DictConfig
|
32 |
+
|
33 |
+
|
34 |
+
def resolve_symbolic_link(symbolic_link_path: Path) -> Path:
|
35 |
+
"""
|
36 |
+
Resolves the absolute path of a symbolic link.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
symbolic_link_path (Path): The path to the symbolic link.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
Path: The absolute path that the symbolic link points to.
|
43 |
+
"""
|
44 |
+
|
45 |
+
link_directory = os.path.dirname(symbolic_link_path)
|
46 |
+
target_path_relative = os.readlink(symbolic_link_path)
|
47 |
+
return os.path.join(link_directory, target_path_relative)
|
48 |
+
|
49 |
+
|
50 |
+
def write_jsonl(metadata: List[dict], file_path: Path) -> None:
|
51 |
+
"""Writes a list of dictionaries to a JSONL file.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
metadata : List[dict]
|
55 |
+
A list of dictionaries, each representing a piece of meta.
|
56 |
+
file_path : Path
|
57 |
+
The file path to save the JSONL file
|
58 |
+
|
59 |
+
This function writes each dictionary in the list to a new line in the specified file.
|
60 |
+
"""
|
61 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
62 |
+
for meta in tqdm(metadata, desc="writing jsonl"):
|
63 |
+
# Convert dictionary to JSON string and write it to the file with a newline
|
64 |
+
json_str = json.dumps(meta, ensure_ascii=False) + "\n"
|
65 |
+
f.write(json_str)
|
66 |
+
print(f"jsonl saved to {file_path}")
|
67 |
+
|
68 |
+
|
69 |
+
def read_jsonl(file_path: Path) -> List[dict]:
|
70 |
+
"""
|
71 |
+
Reads a JSONL file and returns a list of dictionaries.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
file_path : Path
|
75 |
+
The path to the JSONL file to be read.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
List[dict]
|
79 |
+
A list of dictionaries parsed from each line of the JSONL file.
|
80 |
+
"""
|
81 |
+
metadata = []
|
82 |
+
# Open the file for reading
|
83 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
84 |
+
# Split the file into lines
|
85 |
+
lines = f.read().splitlines()
|
86 |
+
# Process each line
|
87 |
+
for line in lines:
|
88 |
+
# Convert JSON string back to dictionary and append to list
|
89 |
+
meta = json.loads(line)
|
90 |
+
metadata.append(meta)
|
91 |
+
# Return the list of metadata
|
92 |
+
return metadata
|
93 |
+
|
94 |
+
def read_json_as_jsonl(file_path: Path) -> List[dict]:
|
95 |
+
metadata = []
|
96 |
+
with open(file_path, 'r', encoding='utf-8') as infile:
|
97 |
+
data = json.load(infile)
|
98 |
+
for k in sorted(data.keys()):
|
99 |
+
meta = {'index': k}
|
100 |
+
meta.update(data[k])
|
101 |
+
metadata.append(meta)
|
102 |
+
return metadata
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def decode_unicode_strings(meta: Dict[str, Any]) -> Dict[str, Any]:
|
107 |
+
processed_meta = {}
|
108 |
+
for k, v in meta.items():
|
109 |
+
if isinstance(v, str):
|
110 |
+
processed_meta[k] = v.encode("utf-8").decode("unicode_escape")
|
111 |
+
else:
|
112 |
+
processed_meta[k] = v
|
113 |
+
return processed_meta
|
114 |
+
|
115 |
+
|
116 |
+
def load_config(config_path: Path) -> DictConfig:
|
117 |
+
"""Loads a configuration file and optionally merges it with a base configuration.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
config_path (Path): Path to the configuration file.
|
121 |
+
"""
|
122 |
+
# Load the initial configuration from the given path
|
123 |
+
config = OmegaConf.load(config_path)
|
124 |
+
|
125 |
+
# Check if there is a base configuration specified and merge if necessary
|
126 |
+
if config.get("base_config", None) is not None:
|
127 |
+
base_config = OmegaConf.load(config["base_config"])
|
128 |
+
config = OmegaConf.merge(base_config, config)
|
129 |
+
|
130 |
+
return config
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
def jsonl_to_csv(jsonl_file_path: str, csv_file_path: str) -> None:
|
135 |
+
"""
|
136 |
+
Converts a JSONL file to a CSV file.
|
137 |
+
|
138 |
+
This function reads a JSONL file, determines all unique keys present in the file,
|
139 |
+
and writes the data to a CSV file with columns for all these keys.
|
140 |
+
"""
|
141 |
+
|
142 |
+
all_keys = set()
|
143 |
+
data_rows = []
|
144 |
+
|
145 |
+
# Read the JSONL file once to extract keys and collect data
|
146 |
+
with open(jsonl_file_path, 'r') as file:
|
147 |
+
for line in file:
|
148 |
+
data = json.loads(line.strip())
|
149 |
+
data_rows.append(data)
|
150 |
+
all_keys.update(data.keys())
|
151 |
+
|
152 |
+
# Convert the set of keys to a sorted list for consistent column order
|
153 |
+
sorted_keys = sorted(all_keys)
|
154 |
+
|
155 |
+
# Write the data to a CSV file
|
156 |
+
with open(csv_file_path, 'w', newline='') as csvfile:
|
157 |
+
writer = csv.DictWriter(csvfile, fieldnames=sorted_keys)
|
158 |
+
|
159 |
+
# Write the header row
|
160 |
+
writer.writeheader()
|
161 |
+
|
162 |
+
# Write each row of data
|
163 |
+
for data in data_rows:
|
164 |
+
writer.writerow(data)
|
165 |
+
|
166 |
+
print(f"CSV file has been created at {csv_file_path}")
|
167 |
+
|
168 |
+
|
169 |
+
def save_metadata(data, filename, headers=None):
|
170 |
+
"""
|
171 |
+
Save metadata to a file.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
data (list of dict): Metadata to be saved.
|
175 |
+
filename (str): Name of the file to save the metadata.
|
176 |
+
headers (list of str): The order of column names to be saved; defaults to the keys from the first dictionary in data if not provided.
|
177 |
+
"""
|
178 |
+
# Set headers to keys from the first dictionary in data if not explicitly provided
|
179 |
+
if headers is None:
|
180 |
+
headers = list(data[0].keys())
|
181 |
+
|
182 |
+
with open(filename, "w", encoding="utf-8") as file:
|
183 |
+
# Write the headers to the file
|
184 |
+
file.write("|".join(headers) + "\n")
|
185 |
+
for entry in data:
|
186 |
+
# Retrieve values in the order of headers, replacing any '|' characters with a space to prevent formatting errors
|
187 |
+
formatted_values = [str(entry.get(key, "")).replace("|", " ") for key in headers]
|
188 |
+
# Write the formatted values to the file
|
189 |
+
file.write("|".join(formatted_values) + "\n")
|
190 |
+
|
191 |
+
|
192 |
+
def read_metadata(filename, headers=None):
|
193 |
+
"""
|
194 |
+
Read metadata from a file.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
filename (str): The file from which to read the metadata.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
list of dict: The metadata read from the file.
|
201 |
+
list of str: The headers used in the file.
|
202 |
+
"""
|
203 |
+
with open(filename, "r", encoding="utf-8") as file:
|
204 |
+
lines = file.readlines()
|
205 |
+
|
206 |
+
data = []
|
207 |
+
# Set headers from the first line of the file if not provided
|
208 |
+
if headers is None:
|
209 |
+
headers = lines[0].strip().split("|")
|
210 |
+
lines = lines[1:]
|
211 |
+
|
212 |
+
for line in lines:
|
213 |
+
line = line.strip()
|
214 |
+
# Skip empty lines
|
215 |
+
if not line:
|
216 |
+
continue
|
217 |
+
# Split the line by '|' and pair with headers to form a dictionary
|
218 |
+
entry_data = dict(zip(headers, line.split("|")))
|
219 |
+
data.append(entry_data)
|
220 |
+
|
221 |
+
return data, headers
|
sparktts/utils/parse_options.sh
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey);
|
4 |
+
# Arnab Ghoshal, Karel Vesely
|
5 |
+
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
13 |
+
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
14 |
+
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
15 |
+
# MERCHANTABLITY OR NON-INFRINGEMENT.
|
16 |
+
# See the Apache 2 License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
|
19 |
+
|
20 |
+
# Parse command-line options.
|
21 |
+
# To be sourced by another script (as in ". parse_options.sh").
|
22 |
+
# Option format is: --option-name arg
|
23 |
+
# and shell variable "option_name" gets set to value "arg."
|
24 |
+
# The exception is --help, which takes no arguments, but prints the
|
25 |
+
# $help_message variable (if defined).
|
26 |
+
|
27 |
+
|
28 |
+
###
|
29 |
+
### The --config file options have lower priority to command line
|
30 |
+
### options, so we need to import them first...
|
31 |
+
###
|
32 |
+
|
33 |
+
# Now import all the configs specified by command-line, in left-to-right order
|
34 |
+
# for ((argpos=1; argpos<$#; argpos++)); do
|
35 |
+
# if [ "${!argpos}" == "--config" ]; then
|
36 |
+
# argpos_plus1=$((argpos+1))
|
37 |
+
# config=${!argpos_plus1}
|
38 |
+
# [ ! -r $config ] && echo "$0: missing config '$config'" && exit 1
|
39 |
+
# . $config # source the config file.
|
40 |
+
# fi
|
41 |
+
# done
|
42 |
+
|
43 |
+
|
44 |
+
###
|
45 |
+
### No we process the command line options
|
46 |
+
###
|
47 |
+
while true; do
|
48 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
49 |
+
case "$1" in
|
50 |
+
# If the enclosing script is called with --help option, print the help
|
51 |
+
# message and exit. Scripts should put help messages in $help_message
|
52 |
+
--help|-h) if [ -z "$help_message" ]; then echo "No help found." 1>&2;
|
53 |
+
else printf "$help_message\n" 1>&2 ; fi;
|
54 |
+
exit 0 ;;
|
55 |
+
--*=*) echo "$0: options to scripts must be of the form --name value, got '$1'"
|
56 |
+
exit 1 ;;
|
57 |
+
# If the first command-line argument begins with "--" (e.g. --foo-bar),
|
58 |
+
# then work out the variable name as $name, which will equal "foo_bar".
|
59 |
+
--*) name=`echo "$1" | sed s/^--// | sed s/-/_/g`;
|
60 |
+
# Next we test whether the variable in question is undefned-- if so it's
|
61 |
+
# an invalid option and we die. Note: $0 evaluates to the name of the
|
62 |
+
# enclosing script.
|
63 |
+
# The test [ -z ${foo_bar+xxx} ] will return true if the variable foo_bar
|
64 |
+
# is undefined. We then have to wrap this test inside "eval" because
|
65 |
+
# foo_bar is itself inside a variable ($name).
|
66 |
+
eval '[ -z "${'$name'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
67 |
+
|
68 |
+
oldval="`eval echo \\$$name`";
|
69 |
+
# Work out whether we seem to be expecting a Boolean argument.
|
70 |
+
if [ "$oldval" == "true" ] || [ "$oldval" == "false" ]; then
|
71 |
+
was_bool=true;
|
72 |
+
else
|
73 |
+
was_bool=false;
|
74 |
+
fi
|
75 |
+
|
76 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
77 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
78 |
+
eval $name=\"$2\";
|
79 |
+
|
80 |
+
# Check that Boolean-valued arguments are really Boolean.
|
81 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
82 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
83 |
+
exit 1;
|
84 |
+
fi
|
85 |
+
shift 2;
|
86 |
+
;;
|
87 |
+
*) break;
|
88 |
+
esac
|
89 |
+
done
|
90 |
+
|
91 |
+
|
92 |
+
# Check for an empty argument to the --cmd option, which can easily occur as a
|
93 |
+
# result of scripting errors.
|
94 |
+
[ ! -z "${cmd+xxx}" ] && [ -z "$cmd" ] && echo "$0: empty argument to --cmd option" 1>&2 && exit 1;
|
95 |
+
|
96 |
+
|
97 |
+
true; # so this script returns exit code 0.
|
sparktts/utils/token_parser.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TASK_TOKEN_MAP = {
|
2 |
+
"vc": "<|task_vc|>",
|
3 |
+
"tts": "<|task_tts|>",
|
4 |
+
"asr": "<|task_asr|>",
|
5 |
+
"s2s": "<|task_s2s|>",
|
6 |
+
"t2s": "<|task_t2s|>",
|
7 |
+
"understand": "<|task_understand|>",
|
8 |
+
"caption": "<|task_cap|>",
|
9 |
+
"controllable_tts": "<|task_controllable_tts|>",
|
10 |
+
"prompt_tts": "<|task_prompt_tts|>",
|
11 |
+
"speech_edit": "<|task_edit|>",
|
12 |
+
}
|
13 |
+
|
14 |
+
LEVELS_MAP = {
|
15 |
+
"very_low": 0,
|
16 |
+
"low": 1,
|
17 |
+
"moderate": 2,
|
18 |
+
"high": 3,
|
19 |
+
"very_high": 4,
|
20 |
+
}
|
21 |
+
|
22 |
+
LEVELS_MAP_UI = {
|
23 |
+
1: 'very_low',
|
24 |
+
2: 'low',
|
25 |
+
3: 'moderate',
|
26 |
+
4: 'high',
|
27 |
+
5: 'very_high'
|
28 |
+
}
|
29 |
+
|
30 |
+
GENDER_MAP = {
|
31 |
+
"female": 0,
|
32 |
+
"male": 1,
|
33 |
+
}
|
34 |
+
|
35 |
+
AGE_MAP = {"Child": 0, "Teenager": 1, "Youth-Adult": 2, "Middle-aged": 3, "Elderly": 4}
|
36 |
+
|
37 |
+
EMO_MAP = {
|
38 |
+
"UNKNOWN": 0,
|
39 |
+
"NEUTRAL": 1,
|
40 |
+
"ANGRY": 2,
|
41 |
+
"HAPPY": 3,
|
42 |
+
"SAD": 4,
|
43 |
+
"FEARFUL": 5,
|
44 |
+
"DISGUSTED": 6,
|
45 |
+
"SURPRISED": 7,
|
46 |
+
"SARCASTIC": 8,
|
47 |
+
"EXCITED": 9,
|
48 |
+
"SLEEPY": 10,
|
49 |
+
"CONFUSED": 11,
|
50 |
+
"EMPHASIS": 12,
|
51 |
+
"LAUGHING": 13,
|
52 |
+
"SINGING": 14,
|
53 |
+
"WORRIED": 15,
|
54 |
+
"WHISPER": 16,
|
55 |
+
"ANXIOUS": 17,
|
56 |
+
"NO-AGREEMENT": 18,
|
57 |
+
"APOLOGETIC": 19,
|
58 |
+
"CONCERNED": 20,
|
59 |
+
"ENUNCIATED": 21,
|
60 |
+
"ASSERTIVE": 22,
|
61 |
+
"ENCOURAGING": 23,
|
62 |
+
"CONTEMPT": 24,
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
class TokenParser:
|
67 |
+
"""Turn label to special token"""
|
68 |
+
|
69 |
+
def __init__(self):
|
70 |
+
pass
|
71 |
+
|
72 |
+
"""Parse the attributes of a person."""
|
73 |
+
|
74 |
+
def __init__(self):
|
75 |
+
pass
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def age(age: str) -> str:
|
79 |
+
"""Turn age token."""
|
80 |
+
age_id = AGE_MAP[age]
|
81 |
+
return f"<|age_{age_id}|>"
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def gender(gender: str) -> str:
|
85 |
+
"""Turn gender token."""
|
86 |
+
gender_id = GENDER_MAP[gender]
|
87 |
+
return f"<|gender_{gender_id}|>"
|
88 |
+
|
89 |
+
@staticmethod
|
90 |
+
def mel_value(mel: int):
|
91 |
+
"""Turn special token of mel scale pitch."""
|
92 |
+
mel = max(0, int(mel))
|
93 |
+
mel = min(1000, int(mel))
|
94 |
+
return f"<|pitch_value_{mel}|>"
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def mel_level(level: str):
|
98 |
+
"""Turn special token of mel level."""
|
99 |
+
level_tag = LEVELS_MAP[level]
|
100 |
+
return f"<|pitch_label_{level_tag}|>"
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def pitch_var_value(pitch_std: int):
|
104 |
+
"""Turn special token of pitch_std value."""
|
105 |
+
assert isinstance(pitch_std, int)
|
106 |
+
pitch_std = max(0, int(pitch_std))
|
107 |
+
pitch_std = min(10, int(pitch_std))
|
108 |
+
return f"<|pitch_var_value_{pitch_std}|>"
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def pitch_var_level(level: str):
|
112 |
+
"""Turn special token of pitch std level."""
|
113 |
+
level_tag = LEVELS_MAP[level]
|
114 |
+
return f"<|pitch_var_label_{level_tag}|>"
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def loudness_value(loudness: int):
|
118 |
+
"""Turn special toak of loudness value [0, 30]"""
|
119 |
+
assert loudness >= 0
|
120 |
+
loudness = max(0, int(loudness))
|
121 |
+
loudness = min(30, int(loudness))
|
122 |
+
return f"<|loudness_value_{loudness}|>"
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def loudness_level(level: str):
|
126 |
+
"""Turn special token of loudness level."""
|
127 |
+
level_tag = LEVELS_MAP[level]
|
128 |
+
return f"<|loudness_label_{level_tag}|>"
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def speed_value(speed: int):
|
132 |
+
"""Turn special token of speed value."""
|
133 |
+
speed = max(0, int(speed))
|
134 |
+
speed = min(10, int(speed))
|
135 |
+
return f"<|speed_value_{speed}|>"
|
136 |
+
|
137 |
+
@staticmethod
|
138 |
+
def speed_level(level: str):
|
139 |
+
"""Turn special token of speed level."""
|
140 |
+
level_tag = LEVELS_MAP[level]
|
141 |
+
return f"<|speed_label_{level_tag}|>"
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def task(task: str) -> str:
|
145 |
+
"""Turn special token of task."""
|
146 |
+
assert task in TASK_TOKEN_MAP.keys()
|
147 |
+
|
148 |
+
return TASK_TOKEN_MAP[task]
|
149 |
+
|
150 |
+
@staticmethod
|
151 |
+
def emotion(emotion: str):
|
152 |
+
emo_id = EMO_MAP[emotion]
|
153 |
+
|
154 |
+
return f"<|emotion_{emo_id}|>"
|
155 |
+
|
156 |
+
|
157 |
+
# test
|
158 |
+
if __name__ == "__main__":
|
159 |
+
from transformers import AutoTokenizer
|
160 |
+
|
161 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
162 |
+
"/aifs4su/xinshengwang/code/StyleCraft/tokenizer/stylecraft-bicodec-pitch-loudness-speed-emotion-tokenizer"
|
163 |
+
)
|
164 |
+
|
165 |
+
tasks = ["tts", "tts", "understand", "controllable_tts", "prompt_tts"]
|
166 |
+
ages = ["Child", "Teenager", "Youth-Adult", "Middle-aged", "Elderly"]
|
167 |
+
genders = ["female", "female", "female", "male", "male"]
|
168 |
+
mels = [100, 200, 300, 400, 500]
|
169 |
+
mel_levels = ["very_low", "low", "moderate", "high", "very_high"]
|
170 |
+
loudnesses = [1, 10, 23, 19, 30]
|
171 |
+
loudness_levels = ["very_low", "low", "moderate", "high", "very_high"]
|
172 |
+
emotions = ["UNKNOWN", "NEUTRAL", "ANGRY", "HAPPY", "SAD"]
|
173 |
+
|
174 |
+
for i in range(5):
|
175 |
+
task = TokenParser.task(tasks[i])
|
176 |
+
age = TokenParser.age(ages[i])
|
177 |
+
gender = TokenParser.gender(genders[i])
|
178 |
+
mel = TokenParser.mel_value(mels[i])
|
179 |
+
mel_level = TokenParser.mel_level(mel_levels[i])
|
180 |
+
loudness = TokenParser.loudness_value(loudnesses[i])
|
181 |
+
loudness_level = TokenParser.loudness_level(loudness_levels[i])
|
182 |
+
emotion = TokenParser.emotion(emotions[i])
|
183 |
+
inputs = [task, age, gender, mel, mel_level, loudness, loudness_level, emotion]
|
184 |
+
inputs = "".join(inputs)
|
185 |
+
ids = tokenizer.encode(inputs, add_special_tokens=False)
|
186 |
+
print(ids)
|
187 |
+
print("decode", tokenizer.decode(ids))
|
src/demos/trump/trump_en.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64fe26aa5fb432be85a183b6e48f7e1045c5c9fd4b8eb4faeeb5d4df5934f80f
|
3 |
+
size 476204
|
src/demos/zhongli/zhongli_en.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b94df88681b9f8afe07d2081bcc354f8e97c83886a944f37b4979b83547d39f
|
3 |
+
size 389804
|
src/demos/余承东/yuchengdong_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90bcbe608c5c483d34213e18b7778e11ab55998d52bbe1b5f8bdd80f0473e7c2
|
3 |
+
size 496044
|
src/demos/刘德华/dehua_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe97bd7c679be4dfbbd30496bf9b192c43dfae4a497ae7d99e85841ea06e77f2
|
3 |
+
size 772524
|
src/demos/哪吒/nezha_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e09b01a61e6965f42b2bbfd47a33730991276ad7e6892531ba844646f8c9601e
|
3 |
+
size 596524
|
src/demos/徐志胜/zhisheng_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dae555aac61eec3389bdcb86060679b86fa1acaadb7fa3192d98dadd8bd67cd
|
3 |
+
size 369324
|
src/demos/李靖/lijing_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0830a5395b78e74a0e2e2198afb98e2fa09ce5199ddfff1cc4d39a1ff47634c
|
3 |
+
size 604844
|
src/demos/杨澜/yanglan_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581a1c88c1de4396b9eda2d9c74d19fb57623b7fd5ecd8e1642e27ce83e14d73
|
3 |
+
size 510124
|
src/demos/马云/mayun_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e939e322dba4cbc22f122f9da1f9f9e5e54fa0c9992d860579b7dead30f46b2d
|
3 |
+
size 718764
|
src/demos/鲁豫/luyu_zh.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ccc4b2e935ecb6c3769e13a6e618e8363c6216909e42b156798d3ef08e2fc7f
|
3 |
+
size 511404
|
src/figures/gradio_TTS.png
ADDED
![]() |
src/figures/gradio_control.png
ADDED
![]() |
src/figures/infer_control.png
ADDED
![]() |
Git LFS Details
|
src/figures/infer_voice_cloning.png
ADDED
![]() |
Git LFS Details
|
src/logo.webp
ADDED
![]() |
Git LFS Details
|
webui.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 SparkAudio
|
2 |
+
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
import torch
|
18 |
+
import soundfile as sf
|
19 |
+
import logging
|
20 |
+
import gradio as gr
|
21 |
+
from datetime import datetime
|
22 |
+
from cli.SparkTTS import SparkTTS
|
23 |
+
from sparktts.utils.token_parser import LEVELS_MAP_UI
|
24 |
+
|
25 |
+
|
26 |
+
def initialize_model(model_dir="pretrained_models/Spark-TTS-0.5B", device=0):
|
27 |
+
"""Load the model once at the beginning."""
|
28 |
+
logging.info(f"Loading model from: {model_dir}")
|
29 |
+
device = torch.device(f"cuda:{device}")
|
30 |
+
model = SparkTTS(model_dir, device)
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
def run_tts(
|
35 |
+
text,
|
36 |
+
model,
|
37 |
+
prompt_text=None,
|
38 |
+
prompt_speech=None,
|
39 |
+
gender=None,
|
40 |
+
pitch=None,
|
41 |
+
speed=None,
|
42 |
+
save_dir="example/results",
|
43 |
+
):
|
44 |
+
"""Perform TTS inference and save the generated audio."""
|
45 |
+
logging.info(f"Saving audio to: {save_dir}")
|
46 |
+
|
47 |
+
if prompt_text is not None:
|
48 |
+
prompt_text = None if len(prompt_text) <= 1 else prompt_text
|
49 |
+
|
50 |
+
# Ensure the save directory exists
|
51 |
+
os.makedirs(save_dir, exist_ok=True)
|
52 |
+
|
53 |
+
# Generate unique filename using timestamp
|
54 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
55 |
+
save_path = os.path.join(save_dir, f"{timestamp}.wav")
|
56 |
+
|
57 |
+
logging.info("Starting inference...")
|
58 |
+
|
59 |
+
# Perform inference and save the output audio
|
60 |
+
with torch.no_grad():
|
61 |
+
wav = model.inference(
|
62 |
+
text,
|
63 |
+
prompt_speech,
|
64 |
+
prompt_text,
|
65 |
+
gender,
|
66 |
+
pitch,
|
67 |
+
speed,
|
68 |
+
)
|
69 |
+
|
70 |
+
sf.write(save_path, wav, samplerate=16000)
|
71 |
+
|
72 |
+
logging.info(f"Audio saved at: {save_path}")
|
73 |
+
|
74 |
+
return save_path, model # Return model along with audio path
|
75 |
+
|
76 |
+
|
77 |
+
def voice_clone(text, model, prompt_text, prompt_wav_upload, prompt_wav_record):
|
78 |
+
"""Gradio interface for TTS with prompt speech input."""
|
79 |
+
# Determine prompt speech (from audio file or recording)
|
80 |
+
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
81 |
+
prompt_text = None if len(prompt_text) < 2 else prompt_text
|
82 |
+
audio_output_path, model = run_tts(
|
83 |
+
text, model, prompt_text=prompt_text, prompt_speech=prompt_speech
|
84 |
+
)
|
85 |
+
|
86 |
+
return audio_output_path, model
|
87 |
+
|
88 |
+
|
89 |
+
def voice_creation(text, model, gender, pitch, speed):
|
90 |
+
"""Gradio interface for TTS with control over voice attributes."""
|
91 |
+
pitch = LEVELS_MAP_UI[int(pitch)]
|
92 |
+
speed = LEVELS_MAP_UI[int(speed)]
|
93 |
+
audio_output_path, model = run_tts(
|
94 |
+
text, model, gender=gender, pitch=pitch, speed=speed
|
95 |
+
)
|
96 |
+
return audio_output_path, model
|
97 |
+
|
98 |
+
|
99 |
+
def build_ui(model_dir, device=0):
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
# Initialize model
|
102 |
+
model = initialize_model(model_dir, device=device)
|
103 |
+
# Use HTML for centered title
|
104 |
+
gr.HTML('<h1 style="text-align: center;">Spark-TTS by SparkAudio</h1>')
|
105 |
+
with gr.Tabs():
|
106 |
+
# Voice Clone Tab
|
107 |
+
with gr.TabItem("Voice Clone"):
|
108 |
+
gr.Markdown(
|
109 |
+
"### Upload reference audio or recording (上传参考音频或者录音)"
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
prompt_wav_upload = gr.Audio(
|
114 |
+
sources="upload",
|
115 |
+
type="filepath",
|
116 |
+
label="Choose the prompt audio file, ensuring the sampling rate is no lower than 16kHz.",
|
117 |
+
)
|
118 |
+
prompt_wav_record = gr.Audio(
|
119 |
+
sources="microphone",
|
120 |
+
type="filepath",
|
121 |
+
label="Record the prompt audio file.",
|
122 |
+
)
|
123 |
+
|
124 |
+
with gr.Row():
|
125 |
+
text_input = gr.Textbox(
|
126 |
+
label="Text", lines=3, placeholder="Enter text here"
|
127 |
+
)
|
128 |
+
prompt_text_input = gr.Textbox(
|
129 |
+
label="Text of prompt speech (Optional; recommended for cloning in the same language.)",
|
130 |
+
lines=3,
|
131 |
+
placeholder="Enter text of the prompt speech.",
|
132 |
+
)
|
133 |
+
|
134 |
+
audio_output = gr.Audio(
|
135 |
+
label="Generated Audio", autoplay=True, streaming=True
|
136 |
+
)
|
137 |
+
|
138 |
+
generate_buttom_clone = gr.Button("Generate")
|
139 |
+
|
140 |
+
generate_buttom_clone.click(
|
141 |
+
voice_clone,
|
142 |
+
inputs=[
|
143 |
+
text_input,
|
144 |
+
gr.State(model),
|
145 |
+
prompt_text_input,
|
146 |
+
prompt_wav_upload,
|
147 |
+
prompt_wav_record,
|
148 |
+
],
|
149 |
+
outputs=[audio_output, gr.State(model)],
|
150 |
+
)
|
151 |
+
|
152 |
+
# Voice Creation Tab
|
153 |
+
with gr.TabItem("Voice Creation"):
|
154 |
+
gr.Markdown(
|
155 |
+
"### Create your own voice based on the following parameters"
|
156 |
+
)
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
gender = gr.Radio(
|
161 |
+
choices=["male", "female"], value="male", label="Gender"
|
162 |
+
)
|
163 |
+
pitch = gr.Slider(
|
164 |
+
minimum=1, maximum=5, step=1, value=3, label="Pitch"
|
165 |
+
)
|
166 |
+
speed = gr.Slider(
|
167 |
+
minimum=1, maximum=5, step=1, value=3, label="Speed"
|
168 |
+
)
|
169 |
+
with gr.Column():
|
170 |
+
text_input_creation = gr.Textbox(
|
171 |
+
label="Input Text",
|
172 |
+
lines=3,
|
173 |
+
placeholder="Enter text here",
|
174 |
+
value="You can generate a customized voice by adjusting parameters such as pitch and speed.",
|
175 |
+
)
|
176 |
+
create_button = gr.Button("Create Voice")
|
177 |
+
|
178 |
+
audio_output = gr.Audio(
|
179 |
+
label="Generated Audio", autoplay=True, streaming=True
|
180 |
+
)
|
181 |
+
create_button.click(
|
182 |
+
voice_creation,
|
183 |
+
inputs=[text_input_creation, gr.State(model), gender, pitch, speed],
|
184 |
+
outputs=[audio_output, gr.State(model)],
|
185 |
+
)
|
186 |
+
|
187 |
+
return demo
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
demo = build_ui(model_dir="pretrained_models/Spark-TTS-0.5B", device=0)
|
192 |
+
demo.launch(server_name="0.0.0.0")
|