# Copyright (c) 2025 SparkAudio # 2025 Xinsheng Wang (w.xinshawn@gmail.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from typing import List from sparktts.modules.blocks.vocos import VocosBackbone from sparktts.modules.blocks.samper import SamplingBlock class Decoder(nn.Module): """Decoder module with convnext and upsampling blocks Args: sample_ratios (List[int]): sample ratios example: [2, 2] means downsample by 2x and then upsample by 2x """ def __init__( self, input_channels: int, vocos_dim: int, vocos_intermediate_dim: int, vocos_num_layers: int, out_channels: int, condition_dim: int = None, sample_ratios: List[int] = [1, 1], use_tanh_at_final: bool = False, ): super().__init__() self.linear_pre = nn.Linear(input_channels, vocos_dim) modules = [ nn.Sequential( SamplingBlock( dim=vocos_dim, groups=vocos_dim, upsample_scale=ratio, ), VocosBackbone( input_channels=vocos_dim, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=2, condition_dim=None, ), ) for ratio in sample_ratios ] self.downsample = nn.Sequential(*modules) self.vocos_backbone = VocosBackbone( input_channels=vocos_dim, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=vocos_num_layers, condition_dim=condition_dim, ) self.linear = nn.Linear(vocos_dim, out_channels) self.use_tanh_at_final = use_tanh_at_final def forward(self, x: torch.Tensor, c: torch.Tensor = None): """encoder forward. Args: x (torch.Tensor): (batch_size, input_channels, length) Returns: x (torch.Tensor): (batch_size, encode_channels, length) """ x = self.linear_pre(x.transpose(1, 2)) x = self.downsample(x).transpose(1, 2) x = self.vocos_backbone(x, condition=c) x = self.linear(x).transpose(1, 2) if self.use_tanh_at_final: x = torch.tanh(x) return x # test if __name__ == "__main__": test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50 condition = torch.randn(8, 256) decoder = Decoder( input_channels=1024, vocos_dim=384, vocos_intermediate_dim=2048, vocos_num_layers=12, out_channels=256, condition_dim=256, sample_ratios=[2, 2], ) output = decoder(test_input, condition) print(output.shape) # torch.Size([8, 256, 200]) if output.shape == torch.Size([8, 256, 200]): print("Decoder test passed") else: print("Decoder test failed")