Spaces:
Sleeping
Sleeping
import assignment23 | |
from assignment23 import make_train_valid_dfs | |
from assignment23 import get_image_embeddings | |
from assignment23 import inference_CLIP | |
import gradio as gr | |
import zipfile | |
import os | |
import pandas as pd | |
import subprocess | |
image_path = "./Images" | |
captions_path = "." | |
data_source = 'flickr8k.zip' | |
with zipfile.ZipFile(data_source, 'r') as zip_ref: | |
zip_ref.extractall('.') | |
cmd = "pwd" | |
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8") | |
cmd = "ls -l" | |
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8") | |
df = pd.read_csv("captions.txt") | |
df['id'] = [id_ for id_ in range(df.shape[0] // 5) for _ in range(5)] | |
df.to_csv("captions.csv", index=False) | |
df = pd.read_csv("captions.csv") | |
_, valid_df = make_train_valid_dfs() | |
model, image_embeddings = get_image_embeddings(valid_df, "best.pt") | |
examples = ["man and women on road"] | |
def greet(query_text): | |
print("Going to invoke inference_CLIP") | |
return inference_CLIP(query_text) | |
gallery = gr.Gallery( | |
label="CLIP result images", show_label=True, elem_id="gallery", | |
columns=[3], rows=[3], object_fit="contain", height="auto") | |
demo = gr.Interface(fn=greet, | |
inputs=gr.Dropdown(choices=examples, label="Search Image by text prompt"), | |
outputs=gallery, | |
title="OpenAI CLIP-Contrastive Language-Image Pre-training") | |
demo.launch("debug") |