from fastai.vision.all import load_learner import gradio as gr import os def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.Image() label = gr.Label() # put all images from the images folder into the examples list examples = [] for file in os.listdir("images"): if file.endswith(".jpg"): examples.append("images/" + file) iface = gr.Interface(fn=classify_image, inputs="image", outputs="label", examples=examples) iface.launch()