owsm_finetune / app.py
ms180's picture
Update app.py
a97446f verified
raw
history blame
8.63 kB
import glob
import os
import shutil
import sys
import re
import tempfile
import zipfile
from pathlib import Path
import gradio as gr
from finetune import finetune_model, log
from language import languages
from task import tasks
import matplotlib.pyplot as plt
def load_markdown():
with open("intro.md", "r") as f:
return f.read()
def read_logs(temp_dir):
if not os.path.exists(f"{temp_dir}/output.log"):
return "Log file not found."
try:
with open(f"{temp_dir}/output.log", "r") as f:
return f.read()
except:
return None
def plot_loss_acc(temp_dir, log_every):
sys.stdout.flush()
lines = []
if not os.path.exists(f"{temp_dir}/output.log"):
return None, None
with open(f"{temp_dir}/output.log", "r") as f:
for line in f.readlines():
if re.match(r"^\[\d+\] - loss: \d+\.\d+ - acc: \d+\.\d+$", line):
lines.append(line)
losses = []
acces = []
if len(lines) == 0:
return None, None
for line in lines:
_, loss, acc = line.split(" - ")
losses.append(float(loss.split(":")[1].strip()))
acces.append(float(acc.split(":")[1].strip()))
x = [i * log_every for i in range(1, len(losses) + 1)]
plt.plot(x, losses, label="loss")
plt.xlim(log_every // 2, x[-1] + log_every // 2)
plt.savefig(f"{temp_dir}/loss.png")
plt.clf()
plt.plot(x, acces, label="acc")
plt.xlim(log_every // 2, x[-1] + log_every // 2)
plt.savefig(f"{temp_dir}/acc.png")
plt.clf()
return f"{temp_dir}/acc.png", f"{temp_dir}/loss.png"
def upload_file(fileobj, temp_dir):
"""
Upload a file and check the uploaded zip file.
"""
# First check if a file is a zip file.
if not zipfile.is_zipfile(fileobj.name):
log(temp_dir, "Please upload a zip file.")
raise gr.Error("Please upload a zip file.")
# Then unzip file
log(temp_dir, "Unzipping file...")
shutil.unpack_archive(fileobj.name, temp_dir)
# check zip file
if not os.path.exists(os.path.join(temp_dir, "text")):
log(temp_dir, "Please upload a valid zip file.")
raise gr.Error("Please upload a valid zip file.")
if not os.path.exists(os.path.join(temp_dir, "text_ctc")):
log(temp_dir, "Please upload a valid zip file.")
raise gr.Error("Please upload a valid zip file.")
if not os.path.exists(os.path.join(temp_dir, "audio")):
log(temp_dir, "Please upload a valid zip file.")
raise gr.Error("Please upload a valid zip file.")
# check if all texts and audio matches
log(temp_dir, "Checking if all texts and audio matches...")
audio_ids = []
with open(os.path.join(temp_dir, "text"), "r") as f:
for line in f.readlines():
audio_ids.append(line.split(maxsplit=1)[0])
with open(os.path.join(temp_dir, "text_ctc"), "r") as f:
ctc_audio_ids = []
for line in f.readlines():
ctc_audio_ids.append(line.split(maxsplit=1)[0])
if len(audio_ids) != len(ctc_audio_ids):
raise gr.Error(
f"Length of `text` ({len(audio_ids)}) and `text_ctc` ({len(ctc_audio_ids)}) is different."
)
if set(audio_ids) != set(ctc_audio_ids):
log(temp_dir, f"`text` and `text_ctc` have different audio ids.")
raise gr.Error(f"`text` and `text_ctc` have different audio ids.")
for audio_id in glob.glob(os.path.join(temp_dir, "audio", "*")):
if not Path(audio_id).stem in audio_ids:
raise gr.Error(f"Audio id {audio_id} is not in `text` or `text_ctc`.")
log(temp_dir, "Successfully uploaded and validated zip file.")
gr.Info("Successfully uploaded and validated zip file.")
return [fileobj]
def delete_tmp_dir(tmp_dir):
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
print(f"Deleted temporary directory: {tmp_dir}")
else:
print("Temporary directory already deleted")
def create_tmp_dir():
tmp_dir = tempfile.mkdtemp()
print(f"Created temporary directory: {tmp_dir}")
return tmp_dir
with gr.Blocks(title="OWSM-finetune") as demo:
tempdir_path=gr.State(create_tmp_dir, delete_callback=delete_tmp_dir, time_to_live=600)
gr.Markdown(
"""# OWSM finetune demo!
Finetune `owsm_v3.1_ebf_base` with your own dataset!
Due to resource limitation, you can only train 5 epochs on maximum.
## Upload dataset and define settings
"""
)
# main contents
with gr.Row():
with gr.Column():
file_output = gr.File()
upload_button = gr.UploadButton("Click to Upload a File", file_count="single")
upload_button.upload(
upload_file, [upload_button, tempdir_path], [file_output]
)
with gr.Column():
lang = gr.Dropdown(
languages["espnet/owsm_v3.1_ebf_base"],
label="Language",
info="Choose language!",
value="jpn",
interactive=True,
)
task = gr.Dropdown(
tasks["espnet/owsm_v3.1_ebf_base"],
label="Task",
info="Choose task!",
value="asr",
interactive=True,
)
gr.Markdown("## Set training settings")
with gr.Row():
with gr.Column():
log_every = gr.Number(value=10, label="log_every", interactive=True)
max_epoch = gr.Slider(1, 5, step=1, label="max_epoch", interactive=True)
scheduler = gr.Dropdown(
["warmuplr"], label="warmup", value="warmuplr", interactive=True
)
warmup_steps = gr.Number(
value=100, label="warmup_steps", interactive=True
)
with gr.Column():
optimizer = gr.Dropdown(
["adam", "adamw", "sgd", "adadelta", "adagrad", "adamax", "asgd", "rmsprop"],
label="optimizer",
value="adam",
interactive=True
)
learning_rate = gr.Number(
value=1e-4, label="learning_rate", interactive=True
)
weight_decay = gr.Number(
value=0.000001, label="weight_decay", interactive=True
)
gr.Markdown("## Logs and plots")
with gr.Row():
with gr.Column():
log_output = gr.Textbox(
show_label=False,
interactive=False,
max_lines=23,
lines=23,
)
demo.load(read_logs, [tempdir_path], log_output, every=2)
with gr.Column():
log_acc = gr.Image(label="Accuracy", show_label=True, interactive=False)
log_loss = gr.Image(label="Loss", show_label=True, interactive=False)
demo.load(plot_loss_acc, [tempdir_path, log_every], [log_acc, log_loss], every=10)
with gr.Row():
with gr.Column():
ref_text = gr.Textbox(
label="Reference text",
show_label=True,
interactive=False,
max_lines=10,
lines=10,
)
with gr.Column():
base_text = gr.Textbox(
label="Baseline text",
show_label=True,
interactive=False,
max_lines=10,
lines=10,
)
with gr.Row():
with gr.Column():
hyp_text = gr.Textbox(
label="Hypothesis text",
show_label=True,
interactive=False,
max_lines=10,
lines=10,
)
with gr.Column():
trained_model = gr.File(
label="Trained model",
interactive=False,
)
with gr.Row():
finetune_btn = gr.Button("Finetune Model", variant="primary")
finetune_btn.click(
finetune_model,
[
lang,
task,
tempdir_path,
log_every,
max_epoch,
scheduler,
warmup_steps,
optimizer,
learning_rate,
weight_decay,
],
[trained_model, ref_text, base_text, hyp_text]
)
gr.Markdown(load_markdown())
if __name__ == "__main__":
try:
demo.queue().launch()
except:
print("Unexpected error:", sys.exc_info()[0])
raise
finally:
shutil.rmtree(os.environ['TEMP_DIR'])