Spaces:
Sleeping
Sleeping
File size: 7,191 Bytes
6deebea 6eea94d 6deebea 583b349 6deebea 6eea94d 6deebea 583b349 6deebea 6eea94d 6deebea 6eea94d 6deebea 30b0b29 c5be32e 583b349 30b0b29 c5be32e 361d0b6 c5be32e 361d0b6 6deebea 30b0b29 361d0b6 30b0b29 6eea94d 583b349 7fe71b9 e247857 6eea94d e247857 6eea94d e247857 6eea94d 4dd16a0 6eea94d c5be32e 361d0b6 c5be32e 6deebea 6eea94d c5be32e 6eea94d c5be32e 6eea94d 583b349 6eea94d c5be32e 6eea94d c5be32e 6eea94d 30b0b29 6eea94d 361d0b6 6eea94d 6deebea e247857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import torch
import numpy as np
import h5py
import faiss
from PIL import Image
import io
import pickle
import random
def get_image(image1, image2, dataset_image_mask, processid_to_index, idx):
if (idx < 162834):
image_enc_padded = image1[idx].astype(np.uint8)
elif(idx >= 162834):
image_enc_padded = image2[idx-162834].astype(np.uint8)
enc_length = dataset_image_mask[idx]
image_enc = image_enc_padded[:enc_length]
image = Image.open(io.BytesIO(image_enc))
return image
def searchEmbeddings(id, mod1, mod2):
# variable and index initialization
original_indx = processid_to_index[id]
dim = 768
num_neighbors = 10
# get index
index = faiss.IndexFlatIP(dim)
if (mod2 == "Image"):
index = faiss.read_index("image_index.index")
elif (mod2 == "DNA"):
index = faiss.read_index("dna_index.index")
# search index
if (mod1 == "Image"):
query = id_to_image_emb_dict[id]
elif(mod1 == "DNA"):
query = id_to_dna_emb_dict[id]
query = query.astype(np.float32)
D, I = index.search(query, num_neighbors)
id_list = []
for indx in I[0]:
id = indx_to_id_dict[indx]
id_list.append(id)
# get images
image0 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, original_indx)
image1 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][0])
image2 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][1])
image3 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][2])
image4 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][3])
image5 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][4])
image6 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][5])
image7 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][6])
image8 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][7])
image9 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][8])
image10 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][9])
# get taxonomic information
# s0 = getTax(original_indx)
# s1 = getTax(I[0][0])
# s2 = getTax(I[0][1])
# s3 = getTax(I[0][2])
# s4 = getTax(I[0][3])
# s5 = getTax(I[0][4])
# s6 = getTax(I[0][5])
# s7 = getTax(I[0][6])
# s8 = getTax(I[0][7])
# s9 = getTax(I[0][8])
# s10 = getTax(I[0][9])
return id_list, image0, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10
#s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10
def getRandID():
indx = random.randrange(0, 325667)
return indx_to_id_dict[indx], indx
# def getTax(indx):
# s = species[indx]
# g = genus[indx]
# f = family[indx]
# str = "Species: " + s + "\nGenus: " + g + "\nFamily: " + f
# return str
with gr.Blocks(title="Bioscan-Clip") as demo:
# open general files
with open("dataset_image1.pickle", "rb") as f:
dataset_image1 = pickle.load(f)
with open("dataset_image2.pickle", "rb") as f:
dataset_image2 = pickle.load(f)
with open("dataset_processid_list.pickle", "rb") as f:
dataset_processid_list = pickle.load(f)
with open("dataset_image_mask.pickle", "rb") as f:
dataset_image_mask = pickle.load(f)
with open("processid_to_index.pickle", "rb") as f:
processid_to_index = pickle.load(f)
with open("indx_to_id_dict.pickle", "rb") as f:
indx_to_id_dict = pickle.load(f)
# open image files
with open("id_to_image_emb_dict.pickle", "rb") as f:
id_to_image_emb_dict = pickle.load(f)
# open dna files
with open("id_to_dna_emb_dict.pickle", "rb") as f:
id_to_dna_emb_dict = pickle.load(f)
# open taxonomy files
# with open("family.pickle", "rb") as f:
# family = [item.decode("utf-8") for item in pickle.load(f)]
# with open("genus.pickle", "rb") as f:
# genus= [item.decode("utf-8") for item in pickle.load(f)]
# with open("species.pickle", "rb") as f:
# species = [item.decode("utf-8") for item in pickle.load(f)]
with gr.Column():
process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for")
process_id_list = gr.Textbox(label="Closest 10 matches:" )
mod1 = gr.Radio(choices=["DNA", "Image"], label="Search From:")
mod2 = gr.Radio(choices=["DNA", "Image"], label="Search To:")
search_btn = gr.Button("Search")
with gr.Row():
with gr.Column():
image0 = gr.Image(label="Original", height=550)
tax0 = gr.Textbox(label="Taxonomy")
with gr.Column():
rand_id = gr.Textbox(label="Random ID:")
rand_id_indx = gr.Textbox(label="Index:")
id_btn = gr.Button("Get Random ID")
with gr.Row():
with gr.Column():
image1 = gr.Image(label=1)
tax1 = gr.Textbox(label="Taxonomy")
with gr.Column():
image2 = gr.Image(label=2)
tax2 = gr.Textbox(label="Taxonomy")
with gr.Column():
image3 = gr.Image(label=3)
tax3 = gr.Textbox(label="Taxonomy")
with gr.Row():
with gr.Column():
image4 = gr.Image(label=4)
tax4 = gr.Textbox(label="Taxonomy")
with gr.Column():
image5 = gr.Image(label=5)
tax5 = gr.Textbox(label="Taxonomy")
with gr.Column():
image6 = gr.Image(label=6)
tax6 = gr.Textbox(label="Taxonomy")
with gr.Row():
with gr.Column():
image7 = gr.Image(label=7)
tax7 = gr.Textbox(label="Taxonomy")
with gr.Column():
image8 = gr.Image(label=8)
tax8 = gr.Textbox(label="Taxonomy")
with gr.Column():
image9 = gr.Image(label=9)
tax9 = gr.Textbox(label="Taxonomy")
with gr.Column():
image10 = gr.Image(label=10)
tax10 = gr.Textbox(label="Taxonomy")
id_btn.click(fn=getRandID, inputs=[], outputs=[rand_id, rand_id_indx])
search_btn.click(fn=searchEmbeddings, inputs=[process_id, mod1, mod2],
outputs=[process_id_list, image0, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10])
#tax0, tax1, tax2, tax3, tax4, tax5, tax6, tax7, tax8, tax9, tax10])
examples = gr.Examples(
examples=[["ABOTH966-22", "DNA", "DNA"],
["CRTOB8472-22", "DNA", "Image"],
["PLOAD050-20", "Image", "DNA"],
["HELAC26711-21", "Image", "Image"]],
inputs=[process_id, mod1, mod2],)
demo.launch() |