File size: 7,191 Bytes
6deebea
 
 
 
 
 
 
 
6eea94d
6deebea
583b349
 
 
 
 
6deebea
 
 
 
 
6eea94d
6deebea
583b349
6deebea
 
 
 
6eea94d
 
 
 
 
 
 
 
 
 
 
6deebea
6eea94d
6deebea
 
 
 
 
30b0b29
c5be32e
583b349
 
 
 
 
 
 
 
 
 
 
30b0b29
c5be32e
361d0b6
 
 
 
 
 
 
 
 
 
 
c5be32e
361d0b6
 
6deebea
30b0b29
 
 
 
361d0b6
 
 
 
 
 
30b0b29
 
6eea94d
583b349
 
 
 
7fe71b9
e247857
6eea94d
e247857
6eea94d
e247857
6eea94d
4dd16a0
6eea94d
 
 
 
 
 
 
 
 
c5be32e
361d0b6
 
 
 
 
 
c5be32e
6deebea
 
 
6eea94d
 
 
 
 
c5be32e
 
 
6eea94d
 
c5be32e
6eea94d
583b349
6eea94d
c5be32e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eea94d
c5be32e
 
 
 
 
 
 
 
 
 
 
 
6eea94d
30b0b29
6eea94d
361d0b6
 
6eea94d
 
 
 
 
 
6deebea
e247857
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import torch
import numpy as np
import h5py
import faiss
from PIL import Image
import io 
import pickle
import random

def get_image(image1, image2, dataset_image_mask, processid_to_index, idx):
    if (idx < 162834):
        image_enc_padded = image1[idx].astype(np.uint8)
    elif(idx >= 162834):
        image_enc_padded = image2[idx-162834].astype(np.uint8)
    enc_length = dataset_image_mask[idx]
    image_enc = image_enc_padded[:enc_length]
    image = Image.open(io.BytesIO(image_enc))
    return image

def searchEmbeddings(id, mod1, mod2):
    # variable and index initialization
    original_indx = processid_to_index[id]    
    dim = 768
    num_neighbors = 10

    # get index
    index = faiss.IndexFlatIP(dim)
    if (mod2 == "Image"):
        index = faiss.read_index("image_index.index")
    elif (mod2 == "DNA"):
        index = faiss.read_index("dna_index.index")

    # search index
    if (mod1 == "Image"):
        query = id_to_image_emb_dict[id]
    elif(mod1 == "DNA"):
        query = id_to_dna_emb_dict[id]
    query = query.astype(np.float32)
    D, I = index.search(query, num_neighbors)

    id_list = []
    for indx in I[0]:
        id = indx_to_id_dict[indx]
        id_list.append(id)
    
    # get images
    image0 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, original_indx)
    image1 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][0])
    image2 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][1])
    image3 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][2])
    image4 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][3])
    image5 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][4])
    image6 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][5])
    image7 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][6])
    image8 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][7])
    image9 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][8])
    image10 = get_image(dataset_image1, dataset_image2, dataset_image_mask, processid_to_index, I[0][9])

    # get taxonomic information
    # s0 = getTax(original_indx)
    # s1 = getTax(I[0][0])
    # s2 = getTax(I[0][1])
    # s3 = getTax(I[0][2])
    # s4 = getTax(I[0][3])
    # s5 = getTax(I[0][4])
    # s6 = getTax(I[0][5])
    # s7 = getTax(I[0][6])
    # s8 = getTax(I[0][7])
    # s9 = getTax(I[0][8])
    # s10 = getTax(I[0][9])
        
    return id_list, image0, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10
    #s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10

def getRandID():
    indx = random.randrange(0, 325667)
    return indx_to_id_dict[indx], indx

# def getTax(indx):
#     s = species[indx]
#     g = genus[indx]
#     f = family[indx]
#     str = "Species: " + s + "\nGenus: " + g + "\nFamily: " + f
#     return str

with gr.Blocks(title="Bioscan-Clip") as demo:
    # open general files
    with open("dataset_image1.pickle", "rb") as f:
        dataset_image1 = pickle.load(f)
    with open("dataset_image2.pickle", "rb") as f:
        dataset_image2 = pickle.load(f)
    with open("dataset_processid_list.pickle", "rb") as f:
        dataset_processid_list = pickle.load(f)
    with open("dataset_image_mask.pickle", "rb") as f: 
        dataset_image_mask = pickle.load(f)
    with open("processid_to_index.pickle", "rb") as f: 
        processid_to_index = pickle.load(f)
    with open("indx_to_id_dict.pickle", "rb") as f: 
        indx_to_id_dict = pickle.load(f)

    # open image files
    with open("id_to_image_emb_dict.pickle", "rb") as f: 
        id_to_image_emb_dict = pickle.load(f)

    # open dna files
    with open("id_to_dna_emb_dict.pickle", "rb") as f: 
        id_to_dna_emb_dict = pickle.load(f)

    # open taxonomy files
    # with open("family.pickle", "rb") as f:
    #     family = [item.decode("utf-8") for item in pickle.load(f)]
    # with open("genus.pickle", "rb") as f:
    #     genus= [item.decode("utf-8") for item in pickle.load(f)]
    # with open("species.pickle", "rb") as f:
    #     species = [item.decode("utf-8") for item in pickle.load(f)]

    with gr.Column():
        process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for")
        process_id_list = gr.Textbox(label="Closest 10 matches:" )
        mod1 = gr.Radio(choices=["DNA", "Image"], label="Search From:")
        mod2 = gr.Radio(choices=["DNA", "Image"], label="Search To:")
        search_btn = gr.Button("Search")

        with gr.Row():
            with gr.Column():
                image0 = gr.Image(label="Original", height=550)
                tax0 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                rand_id = gr.Textbox(label="Random ID:")
                rand_id_indx = gr.Textbox(label="Index:")
                id_btn = gr.Button("Get Random ID")

        with gr.Row():
            with gr.Column():
                image1 = gr.Image(label=1)
                tax1 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image2 = gr.Image(label=2)
                tax2 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image3 = gr.Image(label=3)
                tax3 = gr.Textbox(label="Taxonomy")

        with gr.Row():
            with gr.Column():
                image4 = gr.Image(label=4)
                tax4 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image5 = gr.Image(label=5)
                tax5 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image6 = gr.Image(label=6)
                tax6 = gr.Textbox(label="Taxonomy")

        with gr.Row():   
            with gr.Column():
                image7 = gr.Image(label=7)
                tax7 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image8 = gr.Image(label=8)
                tax8 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image9 = gr.Image(label=9)
                tax9 = gr.Textbox(label="Taxonomy")
            with gr.Column():
                image10 = gr.Image(label=10)
                tax10 = gr.Textbox(label="Taxonomy")

    id_btn.click(fn=getRandID, inputs=[], outputs=[rand_id, rand_id_indx])
    search_btn.click(fn=searchEmbeddings, inputs=[process_id, mod1, mod2], 
                     outputs=[process_id_list, image0, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10])
                              #tax0, tax1, tax2, tax3, tax4, tax5, tax6, tax7, tax8, tax9, tax10])
    examples = gr.Examples(
        examples=[["ABOTH966-22", "DNA", "DNA"],
                  ["CRTOB8472-22", "DNA", "Image"],
                  ["PLOAD050-20", "Image", "DNA"],
                  ["HELAC26711-21", "Image", "Image"]],
        inputs=[process_id, mod1, mod2],)

demo.launch()