Spaces:
Runtime error
Runtime error
File size: 3,433 Bytes
77f8535 f06fcfd 0704cb2 77f8535 0704cb2 77f8535 6dbcc57 77f8535 6dbcc57 77f8535 f06fcfd 77f8535 f06fcfd 77f8535 6dbcc57 f06fcfd 77f8535 6dbcc57 77f8535 f06fcfd 77f8535 6dbcc57 77f8535 0704cb2 77f8535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import sys
import time
import os
import argilla as rg
import pandas as pd
import requests
from datasets import load_dataset, concatenate_datasets
from argilla.listeners import listener
HF_TOKEN = os.environ.get("HF_TOKEN")
HUB_DATASET_NAME = "mserras/alpaca-es-hackaton"
HUB_DATASET_NAME_VAL = "mserras/alpaca-es-hackaton-validated"
@listener(
dataset="somos-alpaca-es",
query="status:Validated", # https://docs.argilla.io/en/latest/guides/features/queries.html
execution_interval_in_seconds=1200, # interval to check the execution of `save_validated_to_hub`
)
def save_validated_to_hub(records, ctx):
if len(records) > 0:
ds = rg.DatasetForTextClassification(records=records).to_datasets()
if HF_TOKEN:
print("Pushing the dataset")
print(ds)
ds.push_to_hub(HUB_DATASET_NAME_VAL, token=HF_TOKEN)
else:
print("SET HF_TOKEN and HUB_DATASET_NAME TO SYNC YOUR DATASET!!!")
else:
print("NO RECORDS found")
class LoadDatasets:
def __init__(self, api_key, workspace="team"):
rg.init(api_key=api_key, workspace=workspace)
@staticmethod
def load_somos():
# Leer el dataset del Hub
try:
print(f"Trying to sync with {HUB_DATASET_NAME}")
dataset = load_dataset(HUB_DATASET_NAME, split="train")
except Exception as e:
print(f"Not possible to sync with {HUB_DATASET_NAME}")
print(e)
dataset = None
# dataset = load_dataset("somosnlp/somos-clean-alpaca-es", split="train")
# if old_ds:
# print("Concatenating datasets")
# dataset = concatenate_datasets([dataset, old_ds])
# print("Concatenated dataset is:")
# print(dataset)
dataset = dataset.remove_columns("metrics")
if not dataset:
print(f"There is no DATASET - Skipping!")
return
print(f"Generating records from the dataset")
records = rg.DatasetForTextClassification.from_datasets(dataset)
settings = rg.TextClassificationSettings(
label_schema=["BAD INSTRUCTION", "BAD INPUT", "BAD OUTPUT", "INAPPROPRIATE", "BIASED", "ALL GOOD", "HALLUCINATION", "UNPROCESSABLE"]
)
rg.configure_dataset(name="somos-alpaca-es", settings=settings, workspace="team")
print("Logging the dataset!")
# Log the dataset
rg.log(
records,
name="somos-alpaca-es",
tags={"description": "SomosNLP Hackathon dataset - instruction filtering version"},
batch_size=200
)
# run listener
save_validated_to_hub.start()
if __name__ == "__main__":
API_KEY = sys.argv[1]
LOAD_DATASETS = sys.argv[2]
if LOAD_DATASETS.lower() == "none":
print("No datasets being loaded")
else:
while True:
try:
response = requests.get("http://0.0.0.0:6900/")
if response.status_code == 200:
ld = LoadDatasets(API_KEY)
ld.load_somos()
break
except requests.exceptions.ConnectionError:
pass
except Exception as e:
print(e)
time.sleep(10)
pass
time.sleep(5)
while True:
time.sleep(60) |