import sys import time import os import argilla as rg import pandas as pd import requests from datasets import load_dataset, concatenate_datasets from argilla.listeners import listener HF_TOKEN = os.environ.get("HF_TOKEN") HUB_DATASET_NAME = "mserras/alpaca-es-hackaton" HUB_DATASET_NAME_VAL = "mserras/alpaca-es-hackaton-validated" @listener( dataset="somos-alpaca-es", query="status:Validated", # https://docs.argilla.io/en/latest/guides/features/queries.html execution_interval_in_seconds=1200, # interval to check the execution of `save_validated_to_hub` ) def save_validated_to_hub(records, ctx): if len(records) > 0: ds = rg.DatasetForTextClassification(records=records).to_datasets() if HF_TOKEN: print("Pushing the dataset") print(ds) ds.push_to_hub(HUB_DATASET_NAME_VAL, token=HF_TOKEN) else: print("SET HF_TOKEN and HUB_DATASET_NAME TO SYNC YOUR DATASET!!!") else: print("NO RECORDS found") class LoadDatasets: def __init__(self, api_key, workspace="team"): rg.init(api_key=api_key, workspace=workspace) @staticmethod def load_somos(): # Leer el dataset del Hub try: print(f"Trying to sync with {HUB_DATASET_NAME}") dataset = load_dataset(HUB_DATASET_NAME, split="train") except Exception as e: print(f"Not possible to sync with {HUB_DATASET_NAME}") print(e) dataset = None # dataset = load_dataset("somosnlp/somos-clean-alpaca-es", split="train") # if old_ds: # print("Concatenating datasets") # dataset = concatenate_datasets([dataset, old_ds]) # print("Concatenated dataset is:") # print(dataset) dataset = dataset.remove_columns("metrics") if not dataset: print(f"There is no DATASET - Skipping!") return print(f"Generating records from the dataset") records = rg.DatasetForTextClassification.from_datasets(dataset) settings = rg.TextClassificationSettings( label_schema=["BAD INSTRUCTION", "BAD INPUT", "BAD OUTPUT", "INAPPROPRIATE", "BIASED", "ALL GOOD", "HALLUCINATION", "UNPROCESSABLE"] ) rg.configure_dataset(name="somos-alpaca-es", settings=settings, workspace="team") print("Logging the dataset!") # Log the dataset rg.log( records, name="somos-alpaca-es", tags={"description": "SomosNLP Hackathon dataset - instruction filtering version"}, batch_size=200 ) # run listener save_validated_to_hub.start() if __name__ == "__main__": API_KEY = sys.argv[1] LOAD_DATASETS = sys.argv[2] if LOAD_DATASETS.lower() == "none": print("No datasets being loaded") else: while True: try: response = requests.get("http://0.0.0.0:6900/") if response.status_code == 200: ld = LoadDatasets(API_KEY) ld.load_somos() break except requests.exceptions.ConnectionError: pass except Exception as e: print(e) time.sleep(10) pass time.sleep(5) while True: time.sleep(60)