File size: 1,618 Bytes
dafe852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import numpy as np
import torch
from torch.autograd import Variable
from pdb import set_trace as st
from IPython import embed

class BaseModel():
    def __init__(self):
        pass;
        
    def name(self):
        return 'BaseModel'

    def initialize(self, use_gpu=True, gpu_ids=[0]):
        self.use_gpu = use_gpu
        self.gpu_ids = gpu_ids

    def forward(self):
        pass

    def get_image_paths(self):
        pass

    def optimize_parameters(self):
        pass

    def get_current_visuals(self):
        return self.input

    def get_current_errors(self):
        return {}

    def save(self, label):
        pass

    # helper saving function that can be used by subclasses
    def save_network(self, network, path, network_label, epoch_label):
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
        save_path = os.path.join(path, save_filename)
        torch.save(network.state_dict(), save_path)

    # helper loading function that can be used by subclasses
    def load_network(self, network, network_label, epoch_label):
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
        save_path = os.path.join(self.save_dir, save_filename)
        print('Loading network from %s'%save_path)
        network.load_state_dict(torch.load(save_path))

    def update_learning_rate():
        pass

    def get_image_paths(self):
        return self.image_paths

    def save_done(self, flag=False):
        np.save(os.path.join(self.save_dir, 'done_flag'),flag)
        np.savetxt(os.path.join(self.save_dir, 'done_flag'),[flag,],fmt='%i')