|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
|
|
from skimage.metrics import structural_similarity as compare_ssim |
|
import torch |
|
from torch.autograd import Variable |
|
|
|
from model.stylegan.lpips import dist_model |
|
|
|
class PerceptualLoss(torch.nn.Module): |
|
def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]): |
|
|
|
super(PerceptualLoss, self).__init__() |
|
print('Setting up Perceptual loss...') |
|
self.use_gpu = use_gpu |
|
self.spatial = spatial |
|
self.gpu_ids = gpu_ids |
|
self.model = dist_model.DistModel() |
|
self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids) |
|
print('...[%s] initialized'%self.model.name()) |
|
print('...Done') |
|
|
|
def forward(self, pred, target, normalize=False): |
|
""" |
|
Pred and target are Variables. |
|
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] |
|
If normalize is False, assumes the images are already between [-1,+1] |
|
|
|
Inputs pred and target are Nx3xHxW |
|
Output pytorch Variable N long |
|
""" |
|
|
|
if normalize: |
|
target = 2 * target - 1 |
|
pred = 2 * pred - 1 |
|
|
|
return self.model.forward(target, pred) |
|
|
|
def normalize_tensor(in_feat,eps=1e-10): |
|
norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True)) |
|
return in_feat/(norm_factor+eps) |
|
|
|
def l2(p0, p1, range=255.): |
|
return .5*np.mean((p0 / range - p1 / range)**2) |
|
|
|
def psnr(p0, p1, peak=255.): |
|
return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) |
|
|
|
def dssim(p0, p1, range=255.): |
|
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. |
|
|
|
def rgb2lab(in_img,mean_cent=False): |
|
from skimage import color |
|
img_lab = color.rgb2lab(in_img) |
|
if(mean_cent): |
|
img_lab[:,:,0] = img_lab[:,:,0]-50 |
|
return img_lab |
|
|
|
def tensor2np(tensor_obj): |
|
|
|
return tensor_obj[0].cpu().float().numpy().transpose((1,2,0)) |
|
|
|
def np2tensor(np_obj): |
|
|
|
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) |
|
|
|
def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False): |
|
|
|
from skimage import color |
|
|
|
img = tensor2im(image_tensor) |
|
img_lab = color.rgb2lab(img) |
|
if(mc_only): |
|
img_lab[:,:,0] = img_lab[:,:,0]-50 |
|
if(to_norm and not mc_only): |
|
img_lab[:,:,0] = img_lab[:,:,0]-50 |
|
img_lab = img_lab/100. |
|
|
|
return np2tensor(img_lab) |
|
|
|
def tensorlab2tensor(lab_tensor,return_inbnd=False): |
|
from skimage import color |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
lab = tensor2np(lab_tensor)*100. |
|
lab[:,:,0] = lab[:,:,0]+50 |
|
|
|
rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1) |
|
if(return_inbnd): |
|
|
|
lab_back = color.rgb2lab(rgb_back.astype('uint8')) |
|
mask = 1.*np.isclose(lab_back,lab,atol=2.) |
|
mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis]) |
|
return (im2tensor(rgb_back),mask) |
|
else: |
|
return im2tensor(rgb_back) |
|
|
|
def rgb2lab(input): |
|
from skimage import color |
|
return color.rgb2lab(input / 255.) |
|
|
|
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): |
|
image_numpy = image_tensor[0].cpu().float().numpy() |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor |
|
return image_numpy.astype(imtype) |
|
|
|
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): |
|
return torch.Tensor((image / factor - cent) |
|
[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) |
|
|
|
def tensor2vec(vector_tensor): |
|
return vector_tensor.data.cpu().numpy()[:, :, 0, 0] |
|
|
|
def voc_ap(rec, prec, use_07_metric=False): |
|
""" ap = voc_ap(rec, prec, [use_07_metric]) |
|
Compute VOC AP given precision and recall. |
|
If use_07_metric is true, uses the |
|
VOC 07 11 point method (default:False). |
|
""" |
|
if use_07_metric: |
|
|
|
ap = 0. |
|
for t in np.arange(0., 1.1, 0.1): |
|
if np.sum(rec >= t) == 0: |
|
p = 0 |
|
else: |
|
p = np.max(prec[rec >= t]) |
|
ap = ap + p / 11. |
|
else: |
|
|
|
|
|
mrec = np.concatenate(([0.], rec, [1.])) |
|
mpre = np.concatenate(([0.], prec, [0.])) |
|
|
|
|
|
for i in range(mpre.size - 1, 0, -1): |
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
|
|
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
return ap |
|
|
|
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): |
|
|
|
image_numpy = image_tensor[0].cpu().float().numpy() |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor |
|
return image_numpy.astype(imtype) |
|
|
|
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): |
|
|
|
return torch.Tensor((image / factor - cent) |
|
[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) |
|
|