|
import argparse |
|
from io import BytesIO |
|
import multiprocessing |
|
from functools import partial |
|
|
|
import os |
|
from PIL import Image |
|
import lmdb |
|
from tqdm import tqdm |
|
from torchvision import datasets |
|
from torchvision.transforms import functional as trans_fn |
|
|
|
|
|
def resize_and_convert(img, size, resample, quality=100): |
|
img = trans_fn.resize(img, size, resample) |
|
img = trans_fn.center_crop(img, size) |
|
buffer = BytesIO() |
|
img.save(buffer, format="jpeg", quality=quality) |
|
val = buffer.getvalue() |
|
|
|
return val |
|
|
|
|
|
def resize_multiple( |
|
img, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS, quality=100 |
|
): |
|
imgs = [] |
|
|
|
for size in sizes: |
|
imgs.append(resize_and_convert(img, size, resample, quality)) |
|
|
|
return imgs |
|
|
|
|
|
def resize_worker(img_file, sizes, resample): |
|
i, file = img_file |
|
img = Image.open(file) |
|
img = img.convert("RGB") |
|
out = resize_multiple(img, sizes=sizes, resample=resample) |
|
|
|
return i, out |
|
|
|
|
|
def prepare( |
|
env, dataset, n_worker, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS |
|
): |
|
resize_fn = partial(resize_worker, sizes=sizes, resample=resample) |
|
|
|
files = sorted(dataset.imgs, key=lambda x: x[0]) |
|
files = [(i, file) for i, (file, label) in enumerate(files)] |
|
total = 0 |
|
|
|
with multiprocessing.Pool(n_worker) as pool: |
|
for i, imgs in tqdm(pool.imap_unordered(resize_fn, files)): |
|
for size, img in zip(sizes, imgs): |
|
key = f"{size}-{str(i).zfill(5)}".encode("utf-8") |
|
|
|
with env.begin(write=True) as txn: |
|
txn.put(key, img) |
|
|
|
total += 1 |
|
|
|
with env.begin(write=True) as txn: |
|
txn.put("length".encode("utf-8"), str(total).encode("utf-8")) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Preprocess images for model training") |
|
parser.add_argument("--out", type=str, help="filename of the result lmdb dataset") |
|
parser.add_argument( |
|
"--size", |
|
type=str, |
|
default="128,256,512,1024", |
|
help="resolutions of images for the dataset", |
|
) |
|
parser.add_argument( |
|
"--n_worker", |
|
type=int, |
|
default=8, |
|
help="number of workers for preparing dataset", |
|
) |
|
parser.add_argument( |
|
"--resample", |
|
type=str, |
|
default="lanczos", |
|
help="resampling methods for resizing images", |
|
) |
|
parser.add_argument("path", type=str, help="path to the image dataset") |
|
|
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.out): |
|
os.makedirs(args.out) |
|
|
|
resample_map = {"lanczos": Image.LANCZOS, "bilinear": Image.BILINEAR} |
|
resample = resample_map[args.resample] |
|
|
|
sizes = [int(s.strip()) for s in args.size.split(",")] |
|
|
|
print(f"Make dataset of image sizes:", ", ".join(str(s) for s in sizes)) |
|
|
|
imgset = datasets.ImageFolder(args.path) |
|
|
|
with lmdb.open(args.out, map_size=1024 ** 4, readahead=False) as env: |
|
prepare(env, imgset, args.n_worker, sizes=sizes, resample=resample) |
|
|