Upload 5 files
Browse files- .gitattributes +1 -0
- anklers.png +0 -0
- app.py +16 -0
- hat.png +3 -0
- prototype.py +114 -0
- utils.py +8 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
hat.png filter=lfs diff=lfs merge=lfs -text
|
anklers.png
ADDED
app.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from src.prototype import activate
|
3 |
+
import gradio
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
iface = gradio.Interface(
|
8 |
+
fn= activate,
|
9 |
+
inputs=gradio.components.Image(type="numpy"),
|
10 |
+
outputs=gradio.components.Image(type="numpy"),
|
11 |
+
title="Hatting Face",
|
12 |
+
description="Upload the picture of your choice :)"
|
13 |
+
)
|
14 |
+
iface.launch()
|
15 |
+
|
16 |
+
|
hat.png
ADDED
Git LFS Details
|
prototype.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import mediapipe
|
5 |
+
|
6 |
+
from src.utils import extract_point, compute_distance
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
class ImageProcessor:
|
11 |
+
def __init__(self, picture, folder_path , model):
|
12 |
+
self.image = picture
|
13 |
+
self.height , self.width = self.image.shape[:2]
|
14 |
+
self.folder_path = folder_path
|
15 |
+
self.model = model
|
16 |
+
|
17 |
+
def detect_and_overlay(self, write = False, output = None):
|
18 |
+
|
19 |
+
detections = self.model.process(self.image).detections
|
20 |
+
|
21 |
+
if not detections:
|
22 |
+
self.image = cv2.putText(self.image, "Unable to detect faces :(", (int(self.width//10), int(self.height//2)), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = 3, color = (0,0,0),thickness = 7)
|
23 |
+
self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
|
24 |
+
return self.image
|
25 |
+
|
26 |
+
for i, elem in enumerate(detections):
|
27 |
+
print(i)
|
28 |
+
x, y, w, h = self.get_bounding_box(elem)
|
29 |
+
gadget_path, nose_path = self.select_gadgets(i)
|
30 |
+
|
31 |
+
|
32 |
+
if nose_path:
|
33 |
+
nose = extract_point(self, elem.location_data.relative_keypoints[2])
|
34 |
+
eye = extract_point(self, elem.location_data.relative_keypoints[0])
|
35 |
+
cv2.circle(self.image, (int(nose[0]), int(nose[1])), int(compute_distance(nose, eye)/2), (255,0,0), -1)
|
36 |
+
|
37 |
+
|
38 |
+
try:
|
39 |
+
roi_x1, roi_y1, roi_x2, roi_y2 = self.calculate_roi_head(x, y, w, h)
|
40 |
+
gadget = self.read_and_resize_gadget(gadget_path, roi_x2 - roi_x1, roi_y2 - roi_y1)
|
41 |
+
self.overlay_gadget(gadget, roi_x1, roi_y1, roi_x2, roi_y2)
|
42 |
+
except:
|
43 |
+
continue
|
44 |
+
|
45 |
+
# self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
|
46 |
+
|
47 |
+
if write:
|
48 |
+
self.display_result(output)
|
49 |
+
|
50 |
+
return self.image
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def get_bounding_box(self, elem):
|
55 |
+
bbox = elem.location_data.relative_bounding_box
|
56 |
+
x = int(bbox.xmin * self.width)
|
57 |
+
y = int(bbox.ymin * self.height)
|
58 |
+
w = int(bbox.width * self.width)
|
59 |
+
h = int(bbox.height * self.height)
|
60 |
+
return x, y, w, h
|
61 |
+
|
62 |
+
def calculate_roi_head(self, x, y, w, h):
|
63 |
+
roi_height = 60
|
64 |
+
roi_width = int(w * 2)
|
65 |
+
roi_x1 = int(x + (w - roi_width) // 2)
|
66 |
+
vertical_offset = 20
|
67 |
+
roi_y1 = int(max(y - roi_height // 2 - vertical_offset, 0))
|
68 |
+
roi_y2 = roi_y1 + roi_height
|
69 |
+
roi_x2 = roi_x1 + roi_width
|
70 |
+
|
71 |
+
return roi_x1, roi_y1, roi_x2, roi_y2
|
72 |
+
|
73 |
+
|
74 |
+
def select_gadgets(self, index):
|
75 |
+
if index == 0:
|
76 |
+
gadget = "anklers.png"
|
77 |
+
nose = True
|
78 |
+
|
79 |
+
else:
|
80 |
+
gadget = "hat.png"
|
81 |
+
nose = False
|
82 |
+
|
83 |
+
return gadget, nose
|
84 |
+
|
85 |
+
def read_and_resize_gadget(self, gadget_path, width, height):
|
86 |
+
gadget = cv2.imread(gadget_path, cv2.IMREAD_UNCHANGED)
|
87 |
+
gadget_resized = cv2.resize(gadget, (width, height))
|
88 |
+
return gadget_resized
|
89 |
+
|
90 |
+
def overlay_gadget(self, gadget, x1, y1, x2, y2):
|
91 |
+
alpha_gadget = gadget[:, :, 3] / 255.0
|
92 |
+
alpha_gadget_resized = np.stack([alpha_gadget] * 3, axis=-1)
|
93 |
+
gadget_bgr = gadget[:, :, :3]
|
94 |
+
gadget_bgr = cv2.cvtColor(gadget_bgr, cv2.COLOR_BGR2RGB)
|
95 |
+
|
96 |
+
roi = self.image[y1:y2, x1:x2]
|
97 |
+
|
98 |
+
roi = cv2.resize(roi, (gadget.shape[1], gadget.shape[0]))
|
99 |
+
|
100 |
+
overlay = (1 - alpha_gadget_resized) * roi + alpha_gadget_resized * gadget_bgr
|
101 |
+
self.image[y1:y2, x1:x2] = overlay
|
102 |
+
|
103 |
+
def display_result(self, output):
|
104 |
+
if not output:
|
105 |
+
output = "image"
|
106 |
+
cv2.imwrite( os.path.join("results", "{}.png".format(output)), self.image )
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def activate(image):
|
111 |
+
folder_path = 'gadgets/'
|
112 |
+
model = mediapipe.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.8)
|
113 |
+
processor = ImageProcessor(image, folder_path, model)
|
114 |
+
return processor.detect_and_overlay()
|
utils.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
def extract_point(obj, pt):
|
4 |
+
return obj.width*pt.x,obj.height* pt.y
|
5 |
+
|
6 |
+
def compute_distance(pt1, pt2):
|
7 |
+
|
8 |
+
return math.sqrt((pt1[0]- pt2[0])**2 + (pt1[1]- pt2[1])**2)
|