Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 31,669 Bytes
4af3178 64dd40c 1380fc9 4af3178 64dd40c 2c63c2f b4966ee 7aae94f 78db81b bd1cf3d 46022eb 78db81b 4af3178 7aae94f 4af3178 7aae94f cd84165 7aae94f f1fa713 cd84165 7aae94f 003d24d 2c63c2f a51beac 3ffdc42 a51beac 3ffdc42 7aae94f f1fa713 7aae94f f1fa713 4af3178 7aae94f 4af3178 7aae94f 4af3178 099d855 f1fa713 bcadbe0 7aae94f 4af3178 2c63c2f cd84165 2c63c2f 7aae94f 556c58e 2c63c2f cd84165 7aae94f cd84165 7aae94f cd84165 2c63c2f 099d855 64dd40c 4af3178 bcadbe0 64dd40c 7d1d0b3 bcadbe0 4af3178 64dd40c ac3fdf5 f61dd83 4af3178 f61dd83 4af3178 f61dd83 7aae94f 78db81b 2c63c2f 78db81b 2c63c2f f1fa713 4d67578 2c63c2f 216d974 4af3178 216d974 d2198dc 2c63c2f 7aae94f 78db81b 234d367 7aae94f 0ef2874 003d24d 4d67578 1bd4020 003d24d 78db81b 0d4db15 4d67578 909b95d 7aae94f 909b95d 7aae94f 4d67578 4af3178 7aae94f 78db81b 2458a90 0d4db15 7aae94f 0d4db15 f61dd83 6af949b 003d24d 7aae94f 3ffdc42 7aae94f 64dd40c f61dd83 7aae94f 3ffdc42 bd1cf3d 3ffdc42 7aae94f 3ffdc42 003d24d 17e0108 003d24d 7aae94f f61dd83 6af949b 7aae94f 0d4db15 7aae94f 817663f 7aae94f 817663f 7aae94f f61dd83 556c58e f61dd83 7aae94f f61dd83 4af3178 f61dd83 556c58e f61dd83 556c58e 3ffdc42 1e84aac 4af3178 1e84aac c05e080 1e84aac 2c58564 1e84aac 4af3178 1e84aac 4af3178 7aae94f 4af3178 7aae94f 4af3178 7aae94f f1fa713 7aae94f 4af3178 33d5719 4af3178 f1fa713 4af3178 f1fa713 4af3178 7aae94f 4af3178 dbfa15a 6135b88 dbfa15a 4af3178 f1fa713 4af3178 33d5719 4af3178 7aae94f 4af3178 c05fcec 4af3178 d2198dc 4d67578 88c25a0 2a75cd8 4af3178 b4966ee eafd5c8 b4966ee 3ffdc42 17e0108 3ffdc42 1bd4020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
from functools import partial, reduce
import json
import os
import re
from datasets import load_dataset
import gradio as gr
from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from tqdm.autonotebook import tqdm
from utils.model_size import get_model_parameters_memory
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
TASKS = list(TASKS_CONFIG.keys())
PRETTY_NAMES = {
"InstructionRetrieval": "Retrieval w/Instructions",
"PairClassification": "Pair Classification",
"BitextMining": "Bitext Mining",
}
TASK_TO_METRIC = {k:v["metric"] for k,v in TASKS_CONFIG.items()}
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
)
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
CROSS_ENCODERS = MODEL_META["cross_encoders"]
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
PROPRIETARY_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in PROPRIETARY_MODELS
}
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
}
CROSS_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in CROSS_ENCODERS
}
BI_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in BI_ENCODERS
}
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
for board_config in BOARDS_CONFIG.values():
for task_category, task_list in board_config["tasks"].items():
TASK_TO_TASK_TYPE[task_category].extend(task_list)
def add_lang(examples):
if not(examples["eval_language"]):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
else:
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
return examples
def norm(names): return set([name.split(" ")[0] for name in names])
def add_task(examples):
# Could be added to the dataset loading script instead
task_name = examples["mteb_dataset_name"]
task_type = None
for task_category, task_list in TASK_TO_TASK_TYPE.items():
if task_name in norm(task_list):
task_type = task_category
break
if task_type is not None:
examples["mteb_task"] = task_type
else:
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
examples["mteb_task"] = "Unknown"
return examples
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
with open("EXTERNAL_MODEL_RESULTS.json") as f:
EXTERNAL_MODEL_RESULTS = json.load(f)
# Update with models not contained
models_to_run = []
for model in EXTERNAL_MODELS:
if model not in EXTERNAL_MODEL_RESULTS:
models_to_run.append(model)
EXTERNAL_MODEL_RESULTS[model] = {k: {v: []} for k, v in TASK_TO_METRIC.items()}
else:
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
models_to_run = EXTERNAL_MODELS
pbar = tqdm(models_to_run, desc="Fetching external model results")
for model in pbar:
pbar.set_description(f"Fetching external model results for {model!r}")
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True)
# For local debugging:
#, download_mode='force_redownload', verification_mode="no_checks")
ds = ds.map(add_lang)
ds = ds.map(add_task)
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
# For now only one metric per task - Could add more metrics lateron
for task, metric in TASK_TO_METRIC.items():
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
# Save & cache EXTERNAL_MODEL_RESULTS
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
json.dump(EXTERNAL_MODEL_RESULTS, f)
def get_dim_seq_size(model):
filenames = [sib.rfilename for sib in model.siblings]
dim, seq = "", ""
for filename in filenames:
if re.match("\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
break
for filename in filenames:
if re.match("\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
# Get model file size without downloading. Parameters in million parameters and memory in GB
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
def make_datasets_clickable(df):
"""Does not work"""
if "BornholmBitextMining" in df.columns:
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
df = df.rename(
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
return df
def add_rank(df):
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
model_infos_path = "model_infos.json"
MODEL_INFOS = {}
if os.path.exists(model_infos_path):
with open(model_infos_path) as f:
MODEL_INFOS = json.load(f)
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True):
global MODEL_INFOS
api = API
models = api.list_models(filter="mteb")
# Initialize list to models that we cannot fetch metadata from
df_list = []
for model in EXTERNAL_MODEL_RESULTS:
results_list = []
for task in tasks:
# Not all models have InstructionRetrieval, other new tasks
if task not in EXTERNAL_MODEL_RESULTS[model]:
continue
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]
if len(datasets) > 0:
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
elif langs:
# Would be cleaner to rely on an extra language column instead
langs_format = [f"({lang})" for lang in langs]
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
else:
res = {k: v for d in results_list for k, v in d.items()}
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
for model in models:
if model.modelId in MODELS_TO_SKIP: continue
print("MODEL", model.modelId)
if model.modelId not in MODEL_INFOS or refresh:
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
MODEL_INFOS[model.modelId] = {
"metadata": meta
}
meta = MODEL_INFOS[model.modelId]["metadata"]
if "model-index" not in meta:
continue
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
if len(datasets) > 0:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
elif langs:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
else:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
# Model & at least one result
if len(out) > 1:
if add_emb_dim:
try:
# Fails on gated repos, so we only include scores for them
if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
except:
MODEL_INFOS[model.modelId]["dim_seq_size"] = "", "", "", ""
df_list.append(out)
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
# Save & cache MODEL_INFOS
with open("model_infos.json", "w") as f:
json.dump(MODEL_INFOS, f)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
cols = sorted(list(df.columns))
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
if len(datasets) > 0:
#filter invalid columns
cols = [col for col in cols if col in base_columns + datasets]
i = 0
for column in base_columns:
if column in cols:
cols.insert(i, cols.pop(cols.index(column)))
i += 1
df = df[cols]
if rank:
df = add_rank(df)
if fillna:
df.fillna("", inplace=True)
return df
# Get dict with a task list for each task category
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
def get_mteb_average(task_dict: dict, refresh=True):
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
DATA_OVERALL = get_mteb_data(
tasks=list(task_dict.keys()),
datasets=all_tasks,
fillna=False,
add_emb_dim=True,
rank=False,
refresh=refresh
)
# Debugging:
# DATA_OVERALL.to_csv("overall.csv")
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False))
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True)
# Start ranking from 1
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
DATA_OVERALL = DATA_OVERALL.round(2)
DATA_TASKS = {}
for task_category, task_category_list in task_dict.items():
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list])
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"]
for task_category, task_category_list in task_dict.items():
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL, DATA_TASKS
boards_data = {}
all_data_tasks = []
for board, board_config in BOARDS_CONFIG.items():
boards_data[board] = {
"data_overall": None,
"data_tasks": {}
}
if board_config["has_overall"]:
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False)
boards_data[board]["data_overall"] = data_overall
boards_data[board]["data_tasks"] = data_tasks
all_data_tasks.extend(data_tasks.values())
else:
for task_category, task_category_list in board_config["tasks"].items():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list, refresh=False)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
boards_data[board]["data_tasks"][task_category] = data_task_category
all_data_tasks.append(data_task_category)
# Exact, add all non-nan integer values for every dataset
NUM_SCORES = 0
DATASETS = []
MODELS = []
# LANGUAGES = []
for d in all_data_tasks:
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
cols_to_ignore = 4 if "Average" in d.columns else 3
# Count number of scores including only non-nan floats & excluding the rank column
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
MODELS += d["Model"].tolist()
NUM_DATASETS = len(set(DATASETS))
# NUM_LANGUAGES = len(set(LANGUAGES))
NUM_MODELS = len(set(MODELS))
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
"""
"""
Each inner tab can have the following keys:
- language: The language of the leaderboard
- language_long: [optional] The long form of the language
- description: The description of the leaderboard
- credits: [optional] The credits for the leaderboard
- data: The data for the leaderboard
- refresh: The function to refresh the leaderboard
"""
def get_refresh_function(task_category, task_list):
def _refresh():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
return data_task_category
return _refresh
data = {
"Overall": {"metric": "Various, refer to task tabs", "data": []}
}
for task in TASKS:
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []}
for board, board_config in BOARDS_CONFIG.items():
init_name = board_config["title"]
if init_name in PRETTY_NAMES:
init_name = PRETTY_NAMES[init_name]
board_pretty_name = f"{init_name} leaderboard"
acronym = board_config.get("acronym", None)
board_icon = board_config.get("icon", None)
if board_icon is None:
board_icon = ""
credits = board_config.get("credits", None)
if board_config["has_overall"]:
overall_pretty_name = board_pretty_name
if acronym is not None:
overall_pretty_name += f" ({board_config['acronym']})"
data["Overall"]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
"data": boards_data[board]["data_overall"],
"refresh": lambda: get_mteb_average(board_config["tasks"])[0],#partial(get_mteb_average, board_config["tasks"]),
"credits": credits,
})
for task_category, task_category_list in board_config["tasks"].items():
task_icon = TASKS_CONFIG[task_category]['icon']
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict):
task_icon = board_config["special_icons"].get(task_category, task_icon)
data[task_category]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
"data": boards_data[board]["data_tasks"][task_category],
"refresh": get_refresh_function(task_category, task_category_list),
"credits": credits,
})
dataframes = []
full_dataframes = []
tabs = []
# The following JavaScript function updates the URL parameters based on the selected task and language
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio
set_window_url_params = """
function(goalUrlObject) {
const params = new URLSearchParams(window.location.search);
for (const [key, value] of Object.entries(goalUrlObject)) {
params.set(key, value);
};
const queryString = '?' + params.toString();
console.log(queryString);
window.history.replaceState({}, '', queryString);
return [];
}
"""
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["task"] = event.target.id
# Either use the cached language for this task or the 1st language
try:
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
except Exception as e: # is Overall tab, no description
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
return current_task_language, language_per_task
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["language"] = event.target.id
if "task" not in current_task_language:
current_task_language["task"] = "overall"
language_per_task[current_task_language["task"]] = event.target.id
return current_task_language, language_per_task
NUMERIC_INTERVALS = {
"<100M": pd.Interval(0, 100, closed="right"),
"100M to 250M": pd.Interval(100, 250, closed="right"),
"250M to 500M": pd.Interval(250, 500, closed="right"),
"500M to 1B": pd.Interval(500, 1000, closed="right"),
">1B": pd.Interval(1000, 1_000_000, closed="right"),
}
MODEL_TYPES = [
"Open",
"Proprietary",
"Sentence Transformers",
"Cross-Encoders",
"Bi-Encoders"
]
def filter_data(search_query, model_types, model_sizes, *full_dataframes):
output_dataframes = []
for df in full_dataframes:
# Apply the search query
if search_query:
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1))
masks = []
for query in search_query.split(";"):
masks.append(names.str.contains(query))
df = df[reduce(lambda a, b: a | b, masks)]
# Apply the model type filtering
if set(model_types) != set(MODEL_TYPES):
masks = []
for model_type in model_types:
if model_type == "Open":
masks.append(~df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Proprietary":
masks.append(df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Sentence Transformers":
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS))
elif model_type == "Cross-Encoders":
masks.append(df["Model"].isin(CROSS_ENCODERS))
elif model_type == "Bi-Encoders":
masks.append(df["Model"].isin(BI_ENCODERS))
if masks:
df = df[reduce(lambda a, b: a | b, masks)]
else:
df = pd.DataFrame(columns=df.columns)
# Apply the model size filtering
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()):
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
sizes = df["Model Size (Million Parameters)"].replace('', 0)
mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
df = df[mask]
output_dataframes.append(df)
return output_dataframes
with gr.Blocks(css=css) as block:
# Store the current task and language for updating the URL. This is a bit hacky, but it works
# for passing the current task and language to the JavaScript function via Gradio
current_task_language = gr.JSON(value=dict(), visible=False)
language_per_task = gr.JSON(value=dict(), visible=False)
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
""")
with gr.Row():
search_bar = gr.Textbox(
label="Search Bar (separate multiple queries with `;`)",
placeholder=" 🔍 Search for a model and press enter...",
)
filter_model_type = gr.CheckboxGroup(
label="Model types",
choices=MODEL_TYPES,
value=MODEL_TYPES,
interactive=True,
elem_classes=["filter-checkbox-group"]
)
filter_model_sizes = gr.CheckboxGroup(
label="Model sizes (in number of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_classes=["filter-checkbox-group"],
scale=2,
)
with gr.Tabs() as outer_tabs:
# Store the tabs for updating them on load based on URL parameters
tabs.append(outer_tabs)
for task, task_values in data.items():
metric = task_values["metric"]
task_tab_id = task.lower().replace(" ", "-")
# Overall, Bitext Mining, Classification, etc.
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task]
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab:
# For updating the 'task' in the URL
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
if "Overall" != task:
gr.Markdown(TASK_DESCRIPTIONS[task])
with gr.Tabs() as task_tabs:
# Store the task tabs for updating them on load based on URL parameters
tabs.append(task_tabs)
for item in task_values["data"]:
item_tab_id = item["language"].lower().replace(" ", "-")
# English, Chinese, French, etc.
with gr.Tab(item["language"], id=item_tab_id) as item_tab:
# For updating the 'language' in the URL
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params)
with gr.Row():
gr.Markdown(f"""
{item['description']}
- **Metric:** {metric}
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''}
""")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * len(item["data"])
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500)
dataframes.append(dataframe)
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
full_dataframes.append(full_dataframe)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20)
gr.Markdown(f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 113
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""" + r"""
Made with ❤️ for NLP. If this work is useful to you, please consider citing:
```bibtex
@article{muennighoff2022mteb,
doi = {10.48550/ARXIV.2210.07316},
url = {https://arxiv.org/abs/2210.07316},
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
}
```
""")
def set_tabs_on_load(request: gr.Request):
"""Set the selected tab based on the URL parameters on load."""
global tabs
valid_task_keys = [child.id for child in tabs[0].children]
return_tabs = [gr.Tabs()] * len(tabs)
query_params = request.request.query_params
task_key = query_params.get("task", "overall")
if task_key not in valid_task_keys:
task_key = "overall"
return_tabs[0] = gr.Tabs(selected=task_key)
tabs_idx = valid_task_keys.index(task_key) + 1
language_key = query_params.get("language", "english")
return_tabs[tabs_idx] = gr.Tabs(selected=language_key)
current_task_language = {"task": task_key, "language": language_key}
language_per_task = {task_key: language_key}
return return_tabs + [current_task_language, language_per_task]
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task])
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
block.queue(max_size=10)
block.launch()
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/
|