File size: 3,172 Bytes
031e5e2 6d737a4 0e3ebc4 6d737a4 031e5e2 6d737a4 031e5e2 6d737a4 144d528 6d737a4 031e5e2 bc82aca 312bafc e0984c6 b8f6c0c e0984c6 b8f6c0c e0984c6 dc55918 bc82aca 6d737a4 0e3ebc4 155bcb1 6118d20 dc55918 6d737a4 acff600 0e3ebc4 bc82aca 0e3ebc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import appStore.target as target_extraction
import appStore.netzero as netzero
import appStore.sector as sector
import appStore.adapmit as adapmit
import appStore.ghg as ghg
import appStore.policyaction as policyaction
import appStore.indicator as indicator
import appStore.doc_processing as processing
from utils.uploadAndExample import add_upload
import streamlit as st
st.set_page_config(page_title = 'Climate Policy Intelligence',
initial_sidebar_state='expanded', layout="wide")
with st.sidebar:
# upload and example doc
choice = st.sidebar.radio(label = 'Select the Document',
help = 'You can upload the document \
or else you can try a example document',
options = ('Upload Document', 'Try Example'),
horizontal = True)
add_upload(choice)
with st.container():
st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Understanding App </h2>", unsafe_allow_html=True)
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
Climate Policy Understanding App is an open-source\
digital tool which aims to assist policy analysts and \
other users in extracting and filtering relevant \
information from public documents.
What Happens in background?
- Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
In this step the document is broken into smaller paragraphs \
(based on word/sentence count).
- Step 2: The paragraphs are fed to **Target Classifier** which detects if
the paragraph contains any *Target* related information or not.
- Step 3: The paragraphs which are detected containing some target \
related information are then fed to multiple classifier to enrich the
Information Extraction.
Classifers:
- **Netzero**: Detects if any Netzero commitment is present in paragraph or not.
- **GHG**: Detects if any GHG related information present in paragraph or not.
- **Sector**: Detects which sectors are spoken/discussed about in paragraph.
- **Adaptation-Mitigation**: Detects if the paragraph is related to Adaptation and/or Mitigation.
""")
st.write("")
apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
sector.app, policyaction.app, indicator.app, adapmit.app]
multiplier_val =1/len(apps)
if st.button("Analyze Document"):
prg = st.progress(0.0)
for i,func in enumerate(apps):
func()
prg.progress((i+1)*multiplier_val)
if 'key1' in st.session_state:
with st.sidebar:
topic = st.radio(
"Which category you want to explore?",
('Target', 'Action', 'Policies/Plans'))
if topic == 'Target':
target_extraction.target_display()
elif topic == 'Action':
policyaction.action_display()
else:
policyaction.policy_display()
# st.write(st.session_state.key1)
|