# set path | |
import glob, os, sys | |
sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from utils.adapmit_classifier import load_adapmitClassifier,adapmit_classification | |
# from utils.keyword_extraction import textrank | |
import logging | |
logger = logging.getLogger(__name__) | |
from utils.config import get_classifier_params | |
from utils.preprocessing import paraLengthCheck | |
from io import BytesIO | |
import xlsxwriter | |
import plotly.express as px | |
# Declare all the necessary variables | |
classifier_identifier = 'adapmit' | |
params = get_classifier_params(classifier_identifier) | |
def to_excel(df): | |
len_df = len(df) | |
output = BytesIO() | |
writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
df.to_excel(writer, index=False, sheet_name='Sheet1') | |
workbook = writer.book | |
worksheet = writer.sheets['Sheet1'] | |
worksheet.data_validation('E2:E{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
worksheet.data_validation('F2:F{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
worksheet.data_validation('G2:G{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
writer.save() | |
processed_data = output.getvalue() | |
return processed_data | |
def app(): | |
### Main app code ### | |
with st.container(): | |
if 'key1' in st.session_state: | |
df = st.session_state.key1 | |
classifier = load_adapmitClassifier(classifier_name=params['model_name']) | |
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
if sum(df['Target Label'] == 'TARGET') > 100: | |
warning_msg = ": This might take sometime, please sit back and relax." | |
else: | |
warning_msg = "" | |
df = adapmit_classification(haystack_doc=df, | |
threshold= params['threshold']) | |
st.session_state.key1 = df | |
# threshold= params['threshold'] | |
# truth_df = df.drop(['text'],axis=1) | |
# truth_df = truth_df.astype(float) >= threshold | |
# truth_df = truth_df.astype(str) | |
# categories = list(truth_df.columns) | |
# placeholder = {} | |
# for val in categories: | |
# placeholder[val] = dict(truth_df[val].value_counts()) | |
# count_df = pd.DataFrame.from_dict(placeholder) | |
# count_df = count_df.T | |
# count_df = count_df.reset_index() | |
# # st.write(count_df) | |
# placeholder = [] | |
# for i in range(len(count_df)): | |
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes']) | |
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No']) | |
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value']) | |
# # st.write("Total Paragraphs: {}".format(len(df))) | |
# fig = px.bar(count_df, y='category', x='count', | |
# color='truth_value',orientation='h', height =200) | |
# c1, c2 = st.columns([1,1]) | |
# with c1: | |
# st.plotly_chart(fig,use_container_width= True) | |
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1) | |
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1) | |
# # st.write(truth_df) | |
# df = pd.concat([df,truth_df['labels']],axis=1) | |
# st.markdown("###### Top few 'Mitigation' related paragraph/text ######") | |
# df = df.sort_values(by = ['Mitigation'], ascending=False) | |
# for i in range(3): | |
# if df.iloc[i]['Mitigation'] >= 0.50: | |
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Mitigation'])) | |
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " "))) | |
# st.markdown("###### Top few 'Adaptation' related paragraph/text ######") | |
# df = df.sort_values(by = ['Adaptation'], ascending=False) | |
# for i in range(3): | |
# if df.iloc[i]['Adaptation'] > 0.5: | |
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Adaptation'])) | |
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " "))) | |
# # st.write(df[['text','labels']]) | |
# df['Validation'] = 'No' | |
# df['Val-Mitigation'] = 'No' | |
# df['Val-Adaptation'] = 'No' | |
# df_xlsx = to_excel(df) | |
# st.download_button(label='π₯ Download Current Result', | |
# data=df_xlsx , | |
# file_name= 'file_adaptation-mitigation.xlsx') | |
# # st.session_state.key4 = | |
# # category =set(df.columns) | |
# # removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'} | |
# # category = list(category - removecols) | |
# else: | |
# st.info("π€ No document found, please try to upload it at the sidebar!") | |
# logging.warning("Terminated as no document provided") | |
# # Creating truth value dataframe | |
# if 'key4' in st.session_state: | |
# if st.session_state.key4 is not None: | |
# df = st.session_state.key4 | |
# st.markdown("###### Select the threshold for classifier ######") | |
# c4, c5 = st.columns([1,1]) | |
# with c4: | |
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0, | |
# step=0.01, value=0.5, | |
# help = "Keep High Value if want refined result, low if dont want to miss anything" ) | |
# category =set(df.columns) | |
# removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'} | |
# category = list(category - removecols) | |
# placeholder = {} | |
# for val in category: | |
# temp = df[val].astype(float) > threshold | |
# temp = temp.astype(str) | |
# placeholder[val] = dict(temp.value_counts()) | |
# count_df = pd.DataFrame.from_dict(placeholder) | |
# count_df = count_df.T | |
# count_df = count_df.reset_index() | |
# placeholder = [] | |
# for i in range(len(count_df)): | |
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False']) | |
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True']) | |
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value']) | |
# fig = px.bar(count_df, x='category', y='count', | |
# color='truth_value', | |
# height=400) | |
# st.write("") | |
# st.plotly_chart(fig) | |
# df['Validation'] = 'No' | |
# df['Val-Mitigation'] = 'No' | |
# df['Val-Adaptation'] = 'No' | |
# df_xlsx = to_excel(df) | |
# st.download_button(label='π₯ Download Current Result', | |
# data=df_xlsx , | |
# file_name= 'file_adaptation-mitigation.xlsx') | |