|
|
|
import glob, os, sys; |
|
sys.path.append('../utils') |
|
|
|
|
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from utils.conditional_classifier import load_conditionalClassifier, conditional_classification |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
from utils.config import get_classifier_params |
|
from io import BytesIO |
|
import xlsxwriter |
|
import plotly.express as px |
|
|
|
|
|
|
|
classifier_identifier = 'conditional' |
|
params = get_classifier_params(classifier_identifier) |
|
|
|
|
|
def app(): |
|
|
|
with st.container(): |
|
if 'key1' in st.session_state: |
|
df = st.session_state.key1 |
|
|
|
|
|
classifier = load_conditionalClassifier(classifier_name=params['model_name']) |
|
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier |
|
|
|
if sum(df['Target Label'] == 'TARGET') > 100: |
|
warning_msg = ": This might take sometime, please sit back and relax." |
|
else: |
|
warning_msg = "" |
|
|
|
df = conditional_classification(haystack_doc=df, |
|
threshold= params['threshold']) |
|
st.session_state.key1 = df |