|
from typing import List, Tuple |
|
from typing_extensions import Literal |
|
import logging |
|
import pandas as pd |
|
from pandas import DataFrame, Series |
|
from utils.config import getconfig |
|
from utils.preprocessing import processingpipeline |
|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
@st.cache_resource |
|
def load_conditionalClassifier(config_file:str = None, classifier_name:str = None): |
|
""" |
|
loads the document classifier using haystack, where the name/path of model |
|
in HF-hub as string is used to fetch the model object.Either configfile or |
|
model should be passed. |
|
1. https://docs.haystack.deepset.ai/reference/document-classifier-api |
|
2. https://docs.haystack.deepset.ai/docs/document_classifier |
|
Params |
|
-------- |
|
config_file: config file path from which to read the model name |
|
classifier_name: if modelname is passed, it takes a priority if not \ |
|
found then will look for configfile, else raise error. |
|
Return: document classifier model |
|
""" |
|
if not classifier_name: |
|
if not config_file: |
|
logging.warning("Pass either model name or config file") |
|
return |
|
else: |
|
config = getconfig(config_file) |
|
classifier_name = config.get('conditional','MODEL') |
|
|
|
logging.info("Loading conditional classifier") |
|
doc_classifier = pipeline("text-classification", |
|
model=classifier_name, |
|
top_k =1) |
|
|
|
return doc_classifier |
|
|
|
|
|
@st.cache_data |
|
def conditional_classification(haystack_doc:pd.DataFrame, |
|
threshold:float = 0.8, |
|
classifier_model:pipeline= None |
|
)->Tuple[DataFrame,Series]: |
|
""" |
|
Text-Classification on the list of texts provided. Classifier provides the |
|
most appropriate label for each text. It informs if paragraph contains any |
|
netzero information or not. |
|
Params |
|
--------- |
|
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline |
|
contains the list of paragraphs in different format,here the list of |
|
Haystack Documents is used. |
|
threshold: threshold value for the model to keep the results from classifier |
|
classifiermodel: you can pass the classifier model directly,which takes priority |
|
however if not then looks for model in streamlit session. |
|
In case of streamlit avoid passing the model directly. |
|
Returns |
|
---------- |
|
df: Dataframe |
|
""" |
|
logging.info("Working on Conditionality Identification") |
|
haystack_doc['Conditional Label'] = 'NA' |
|
haystack_doc['Conditional Score'] = 0.0 |
|
haystack_doc['cond_check'] = False |
|
haystack_doc['PA_check'] = haystack_doc['Policy-Action Label'].apply(lambda x: True if len(x) != 0 else False) |
|
|
|
|
|
|
|
haystack_doc['cond_check'] = haystack_doc.apply(lambda x: True if ( |
|
(x['Target Label'] == 'TARGET') | (x['PA_check'] == True)) else |
|
False, axis=1) |
|
|
|
temp = haystack_doc[haystack_doc['cond_check'] == True] |
|
temp = temp.reset_index(drop=True) |
|
df = haystack_doc[haystack_doc['cond_check'] == False] |
|
df = df.reset_index(drop=True) |
|
|
|
if not classifier_model: |
|
classifier_model = st.session_state['conditional_classifier'] |
|
|
|
results = classifier_model(list(temp.text)) |
|
labels_= [(l[0]['label'],l[0]['score']) for l in results] |
|
temp['Conditional Label'],temp['Conditional Score'] = zip(*labels_) |
|
|
|
|
|
df = pd.concat([df,temp]) |
|
df = df.drop(columns = ['cond_check','PA_check']) |
|
df = df.reset_index(drop =True) |
|
df.index += 1 |
|
|
|
return df |