Spaces:
Sleeping
Sleeping
# set path | |
import glob, os, sys; | |
sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from utils.vulnerability_classifier import load_vulnerabilityClassifier, vulnerability_classification | |
import logging | |
logger = logging.getLogger(__name__) | |
from utils.config import get_classifier_params | |
from utils.preprocessing import paraLengthCheck | |
from io import BytesIO | |
import xlsxwriter | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from utils.vulnerability_classifier import label_dict | |
# Declare all the necessary variables | |
classifier_identifier = 'vulnerability' | |
params = get_classifier_params(classifier_identifier) | |
def to_excel(df,sectorlist): | |
len_df = len(df) | |
output = BytesIO() | |
writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
df.to_excel(writer, index=False, sheet_name='Sheet1') | |
workbook = writer.book | |
worksheet = writer.sheets['Sheet1'] | |
worksheet.data_validation('S2:S{}'.format(len_df), | |
{'validate': 'list', | |
'source': ['No', 'Yes', 'Discard']}) | |
worksheet.data_validation('X2:X{}'.format(len_df), | |
{'validate': 'list', | |
'source': sectorlist + ['Blank']}) | |
worksheet.data_validation('T2:T{}'.format(len_df), | |
{'validate': 'list', | |
'source': sectorlist + ['Blank']}) | |
worksheet.data_validation('U2:U{}'.format(len_df), | |
{'validate': 'list', | |
'source': sectorlist + ['Blank']}) | |
worksheet.data_validation('V2:V{}'.format(len_df), | |
{'validate': 'list', | |
'source': sectorlist + ['Blank']}) | |
worksheet.data_validation('W2:U{}'.format(len_df), | |
{'validate': 'list', | |
'source': sectorlist + ['Blank']}) | |
writer.save() | |
processed_data = output.getvalue() | |
return processed_data | |
def app(): | |
### Main app code ### | |
with st.container(): | |
# If a document has been processed | |
if 'key0' in st.session_state: | |
# Run vulnerability classifier | |
df = st.session_state.key0 | |
classifier = load_vulnerabilityClassifier(classifier_name=params['model_name']) | |
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
# Get the predictions | |
df = vulnerability_classification(haystack_doc=df, | |
threshold= params['threshold']) | |
# Store df in session state with key1 | |
st.session_state.key1 = df | |
def vulnerability_display(): | |
# Get the vulnerability df | |
df = st.session_state['key1'] | |
# Filter the dataframe to only show the paragraphs with references | |
df_filtered = df[df['Vulnerability Label'].apply(lambda x: len(x) > 0 and 'Other' not in x)] | |
# Rename column | |
df_filtered.rename(columns={'Vulnerability Label': 'Group(s)'}, inplace=True) | |
# Header | |
st.subheader("Explore references to vulnerable groups:") | |
# Text | |
num_paragraphs = len(df['Vulnerability Label']) | |
num_references = len(df_filtered['Group(s)']) | |
st.markdown(f"""<div style="text-align: justify;">The document contains a | |
total of <span style="color: red;">{num_paragraphs}</span> paragraphs. | |
We identified <span style="color: red;">{num_references}</span> | |
references to groups in vulnerable situations.</div> | |
<br> | |
<div style="text-align: justify;">We are searching for references related | |
to the following groups: (1) Agricultural communities, (2) Children, (3) | |
Ethnic, racial and other minorities, (4) Fishery communities, (5) Informal sector | |
workers, (6) Members of indigenous and local communities, (7) Migrants and | |
displaced persons, (8) Older persons, (9) Persons living in poverty, (10) | |
Persons living with disabilities, (11) Persons with pre-existing health conditions, | |
(12) Residents of drought-prone regions, (13) Rural populations, (14) Sexual | |
minorities (LGBTQI+), (15) Urban populations, (16) Women and other genders.</div> | |
<br> | |
<div style="text-align: justify;">In the chart on the right you can see how often | |
each group has been referenced. For a more detailed view in the text, see the paragraphs and | |
their respective labels in the table below.</div>""", unsafe_allow_html=True) | |
### Bar chart | |
# # Create a df that stores all the labels | |
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label']) | |
# Count how often each label appears in the "Group identified" column | |
group_counts = {} | |
# Iterate through each sublist | |
for index, row in df_filtered.iterrows(): | |
# Iterate through each group in the sublist | |
for sublist in row['Group(s)']: | |
# Update the count in the dictionary | |
group_counts[sublist] = group_counts.get(sublist, 0) + 1 | |
# Create a new dataframe from group_counts | |
df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count']) | |
# Merge the label counts with the df_label DataFrame | |
df_label_count = df_labels.merge(df_label_count, on='Label', how='left') | |
# Exclude the "Other" group and all groups that do not have a label | |
df_bar_chart = df_label_count[df_label_count['Label'] != 'Other'] | |
df_bar_chart = df_bar_chart.dropna(subset=['Count']) | |
# Bar chart | |
fig = go.Figure() | |
fig.add_trace(go.Bar( | |
y=df_bar_chart.Label, | |
x=df_bar_chart.Count, | |
orientation='h', | |
marker=dict(color='purple'), | |
)) | |
# Customize layout | |
fig.update_layout( | |
title='Number of references to each group', | |
xaxis_title='Number of references', | |
yaxis_title='Group', | |
) | |
# Show the plot | |
#fig.show() | |
#Show plot | |
st.plotly_chart(fig, use_container_width=True) |