Spaces:
Sleeping
Sleeping
# set path | |
import glob, os, sys; | |
sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from st_aggrid import AgGrid | |
from st_aggrid.shared import ColumnsAutoSizeMode | |
from utils.vulnerability_classifier import vulnerability_classification | |
from utils.vulnerability_classifier import runPreprocessingPipeline, load_Classifier | |
import logging | |
logger = logging.getLogger(__name__) | |
from utils.checkconfig import getconfig | |
# Declare all the necessary variables | |
config = getconfig('paramconfig.cfg') | |
model_name = config.get('vulnerability','MODEL') | |
split_by = config.get('vulnerability','SPLIT_BY') | |
split_length = int(config.get('vulnerability','SPLIT_LENGTH')) | |
split_overlap = int(config.get('vulnerability','SPLIT_OVERLAP')) | |
remove_punc = bool(int(config.get('vulnerability','REMOVE_PUNC'))) | |
split_respect_sentence_boundary = bool(int(config.get('vulnerability','RESPECT_SENTENCE_BOUNDARY'))) | |
threshold = float(config.get('vulnerability','THRESHOLD')) | |
top_n = int(config.get('vulnerability','TOP_KEY')) | |
def app(): | |
#### APP INFO ##### | |
with st.container(): | |
st.markdown("<h1 style='text-align: center; color: black;'> Vulnerability Classification </h1>", unsafe_allow_html=True) | |
st.write(' ') | |
st.write(' ') | |
with st.expander("ℹ️ - About this app", expanded=False): | |
st.write( | |
""" | |
The *SDG Analysis* app is an easy-to-use interface built \ | |
in Streamlit for analyzing policy documents with respect to SDG \ | |
Classification for the paragraphs/texts in the document and \ | |
extracting the keyphrase per SDG label - developed by GIZ Data \ | |
and the Sustainable Development Solution Network. \n | |
""") | |
st.write("""**Document Processing:** The Uploaded/Selected document is \ | |
automatically cleaned and split into paragraphs with a maximum \ | |
length of 120 words using a Haystack preprocessing pipeline. The \ | |
length of 120 is an empirical value which should reflect the length \ | |
of a “context” and should limit the paragraph length deviation. \ | |
However, since we want to respect the sentence boundary the limit \ | |
can breach and hence this limit of 120 is tentative. \n | |
""") | |
st.write("""**SDG cLassification:** The application assigns paragraphs \ | |
to 16 of the 17 United Nations Sustainable Development Goals (SDGs).\ | |
SDG 17 “Partnerships for the Goals” is excluded from the analysis due \ | |
to its broad nature which could potentially inflate the results. \ | |
Each paragraph is assigned to one SDG only. Again, the results are \ | |
displayed in a summary table including the number of the SDG, a \ | |
relevancy score highlighted through a green color shading, and the \ | |
respective text of the analyzed paragraph. Additionally, a pie \ | |
chart with a blue color shading is displayed which illustrates the \ | |
three most prominent SDGs in the document. The SDG classification \ | |
uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \ | |
from [OSDG.ai](https://osdg.ai/) which is a global \ | |
partnerships and growing community of researchers and institutions \ | |
interested in the classification of research according to the \ | |
Sustainable Development Goals. The summary table only displays \ | |
paragraphs with a calculated relevancy score above 85%. \n""") | |
st.write("""**Keyphrase Extraction:** The application extracts 15 \ | |
keyphrases from the document, for each SDG label and displays the \ | |
results in a summary table. The keyphrases are extracted using \ | |
using [Textrank](https://github.com/summanlp/textrank)\ | |
which is an easy-to-use computational less expensive \ | |
model leveraging combination of TFIDF and Graph networks. | |
""") | |
st.write("") | |
st.write("") | |
st.markdown("Some runtime metrics tested with cpu: Intel(R) Xeon(R) CPU @ 2.20GHz, memory: 13GB") | |
col1,col2,col3,col4 = st.columns([2,2,4,4]) | |
with col1: | |
st.caption("Loading Time Classifier") | |
# st.markdown('<div style="text-align: center;">12 sec</div>', unsafe_allow_html=True) | |
st.write("12 sec") | |
with col2: | |
st.caption("OCR File processing") | |
# st.markdown('<div style="text-align: center;">50 sec</div>', unsafe_allow_html=True) | |
st.write("50 sec") | |
with col3: | |
st.caption("SDG Classification of 200 paragraphs(~ 35 pages)") | |
# st.markdown('<div style="text-align: center;">120 sec</div>', unsafe_allow_html=True) | |
st.write("120 sec") | |
with col4: | |
st.caption("Keyword extraction for 200 paragraphs(~ 35 pages)") | |
# st.markdown('<div style="text-align: center;">3 sec</div>', unsafe_allow_html=True) | |
st.write("3 sec") | |
### Main app code ### | |
with st.container(): | |
if st.button("RUN Vulnerability Analysis"): | |
if 'filepath' in st.session_state: | |
file_name = st.session_state['filename'] | |
file_path = st.session_state['filepath'] | |
classifier = load_Classifier(classifier_name=model_name) | |
st.session_state['vulnerability_classifier'] = classifier | |
all_documents = runPreprocessingPipeline(file_name= file_name, | |
file_path= file_path, split_by= split_by, | |
split_length= split_length, | |
split_respect_sentence_boundary= split_respect_sentence_boundary, | |
split_overlap= split_overlap, remove_punc= remove_punc) | |
if len(all_documents['documents']) > 100: | |
warning_msg = ": This might take sometime, please sit back and relax." | |
else: | |
warning_msg = "" | |
with st.spinner("Running Classification{}".format(warning_msg)): | |
df, x = vulnerability_classification(haystack_doc=all_documents['documents'], | |
threshold= threshold) | |
df = df.drop(['Relevancy'], axis = 1) | |
vulnerability_labels = x.vulnerability.unique() | |
textrank_keyword_list = [] | |
for label in sdg_labels: | |
vulnerability_data = " ".join(df[df.vulnerability == label].text.to_list()) | |
textranklist_ = textrank(textdata=sdgdata, words= top_n) | |
if len(textranklist_) > 0: | |
textrank_keyword_list.append({'Vulnerability':label, 'TextRank Keywords':",".join(textranklist_)}) | |
textrank_keywords_df = pd.DataFrame(textrank_keyword_list) | |
plt.rcParams['font.size'] = 25 | |
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) | |
# plot | |
fig, ax = plt.subplots() | |
ax.pie(x['count'], colors=colors, radius=2, center=(4, 4), | |
wedgeprops={"linewidth": 1, "edgecolor": "white"}, | |
textprops={'fontsize': 14}, | |
frame=False,labels =list(x.SDG_Num), | |
labeldistance=1.2) | |
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100) | |
st.markdown("#### Anything related to Vulnerabilities? ####") | |
c4, c5, c6 = st.columns([1,2,2]) | |
with c5: | |
st.pyplot(fig) | |
with c6: | |
labeldf = x['SDG_name'].values.tolist() | |
labeldf = "<br>".join(labeldf) | |
st.markdown(labeldf, unsafe_allow_html=True) | |
st.write("") | |
st.markdown("###### What keywords are present under vulnerability classified text? ######") | |
AgGrid(textrank_keywords_df, reload_data = False, | |
update_mode="value_changed", | |
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS) | |
st.write("") | |
st.markdown("###### Top few vulnerability Classified paragraph/text results ######") | |
AgGrid(df, reload_data = False, update_mode="value_changed", | |
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS) | |
else: | |
st.info("🤔 No document found, please try to upload it at the sidebar!") | |
logging.warning("Terminated as no document provided") | |