Spaces:
Sleeping
Sleeping
# # set path | |
# import glob, os, sys; | |
# sys.path.append('../utils') | |
# #import needed libraries | |
# import seaborn as sns | |
# import matplotlib.pyplot as plt | |
# import numpy as np | |
# import pandas as pd | |
# import streamlit as st | |
# from st_aggrid import AgGrid | |
# from utils.target_classifier import load_targetClassifier, target_classification | |
# import logging | |
# logger = logging.getLogger(__name__) | |
# from utils.config import get_classifier_params | |
# from io import BytesIO | |
# import xlsxwriter | |
# import plotly.express as px | |
# from pandas.api.types import ( | |
# is_categorical_dtype, | |
# is_datetime64_any_dtype, | |
# is_numeric_dtype, | |
# is_object_dtype, | |
# is_list_like) | |
# # Declare all the necessary variables | |
# classifier_identifier = 'target' | |
# params = get_classifier_params(classifier_identifier) | |
# ## Labels dictionary ### | |
# _lab_dict = { | |
# '0':'NO', | |
# '1':'YES', | |
# } | |
# # # @st.cache_data | |
# # def to_excel(df): | |
# # # df['Target Validation'] = 'No' | |
# # # df['Netzero Validation'] = 'No' | |
# # # df['GHG Validation'] = 'No' | |
# # # df['Adapt-Mitig Validation'] = 'No' | |
# # # df['Sector'] = 'No' | |
# # len_df = len(df) | |
# # output = BytesIO() | |
# # writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
# # df.to_excel(writer, index=False, sheet_name='rawdata') | |
# # if 'target_hits' in st.session_state: | |
# # target_hits = st.session_state['target_hits'] | |
# # if 'keep' in target_hits.columns: | |
# # target_hits = target_hits[target_hits.keep == True] | |
# # target_hits = target_hits.reset_index(drop=True) | |
# # target_hits.drop(columns = ['keep'], inplace=True) | |
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target') | |
# # else: | |
# # target_hits = target_hits.sort_values(by=['Target Score'], ascending=False) | |
# # target_hits = target_hits.reset_index(drop=True) | |
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target') | |
# # else: | |
# # target_hits = df[df['Target Label'] == True] | |
# # target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label', | |
# # 'Action Score','Policies_Plans Label','Indicator Label', | |
# # 'Policies_Plans Score','Conditional Score'],inplace=True) | |
# # target_hits = target_hits.sort_values(by=['Target Score'], ascending=False) | |
# # target_hits = target_hits.reset_index(drop=True) | |
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target') | |
# # if 'action_hits' in st.session_state: | |
# # action_hits = st.session_state['action_hits'] | |
# # if 'keep' in action_hits.columns: | |
# # action_hits = action_hits[action_hits.keep == True] | |
# # action_hits = action_hits.reset_index(drop=True) | |
# # action_hits.drop(columns = ['keep'], inplace=True) | |
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action') | |
# # else: | |
# # action_hits = action_hits.sort_values(by=['Action Score'], ascending=False) | |
# # action_hits = action_hits.reset_index(drop=True) | |
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action') | |
# # else: | |
# # action_hits = df[df['Action Label'] == True] | |
# # action_hits.drop(columns=['Target Label','Target Score','Netzero Score', | |
# # 'Netzero Label','GHG Label', | |
# # 'GHG Score','Action Label','Policies_Plans Label', | |
# # 'Policies_Plans Score','Conditional Score'],inplace=True) | |
# # action_hits = action_hits.sort_values(by=['Action Score'], ascending=False) | |
# # action_hits = action_hits.reset_index(drop=True) | |
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action') | |
# # # hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score']) | |
# # workbook = writer.book | |
# # # worksheet = writer.sheets['Sheet1'] | |
# # # worksheet.data_validation('L2:L{}'.format(len_df), | |
# # # {'validate': 'list', | |
# # # 'source': ['No', 'Yes', 'Discard']}) | |
# # # worksheet.data_validation('M2:L{}'.format(len_df), | |
# # # {'validate': 'list', | |
# # # 'source': ['No', 'Yes', 'Discard']}) | |
# # # worksheet.data_validation('N2:L{}'.format(len_df), | |
# # # {'validate': 'list', | |
# # # 'source': ['No', 'Yes', 'Discard']}) | |
# # # worksheet.data_validation('O2:L{}'.format(len_df), | |
# # # {'validate': 'list', | |
# # # 'source': ['No', 'Yes', 'Discard']}) | |
# # # worksheet.data_validation('P2:L{}'.format(len_df), | |
# # # {'validate': 'list', | |
# # # 'source': ['No', 'Yes', 'Discard']}) | |
# # writer.save() | |
# # processed_data = output.getvalue() | |
# # return processed_data | |
# def app(): | |
# ### Main app code ### | |
# with st.container(): | |
# if 'key0' in st.session_state: | |
# df = st.session_state.key0 | |
# #load Classifier | |
# classifier = load_targetClassifier(classifier_name=params['model_name']) | |
# st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
# if len(df) > 100: | |
# warning_msg = ": This might take sometime, please sit back and relax." | |
# else: | |
# warning_msg = "" | |
# df = target_classification(haystack_doc=df, | |
# threshold= params['threshold']) | |
# st.session_state.key1 = df | |
# # def target_display(): | |
# # if 'key1' in st.session_state: | |
# # df = st.session_state.key1 | |
# # st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\ | |
# # .format(os.path.basename(st.session_state['filename']), | |
# # len(df))) | |
# # hits = df[df['Target Label'] == 'TARGET'].reset_index(drop=True) | |
# # range_val = min(5,len(hits)) | |
# # if range_val !=0: | |
# # # collecting some statistics | |
# # count_target = sum(hits['Target Label'] == 'TARGET') | |
# # count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET') | |
# # count_ghg = sum(hits['GHG Label'] == 'GHG') | |
# # count_transport = sum([True if 'Transport' in x else False | |
# # for x in hits['Sector Label']]) | |
# # c1, c2 = st.columns([1,1]) | |
# # with c1: | |
# # st.write('**Target Paragraphs**: `{}`'.format(count_target)) | |
# # st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero)) | |
# # with c2: | |
# # st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg)) | |
# # st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport)) | |
# # # st.write('-------------------') | |
# # hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label', | |
# # 'Action Score','Policies_Plans Label','Indicator Label', | |
# # 'Policies_Plans Score','Conditional Score'],inplace=True) | |
# # hits = hits.sort_values(by=['Target Score'], ascending=False) | |
# # hits = hits.reset_index(drop=True) | |
# # # netzerohit = hits[hits['Netzero Label'] == 'NETZERO'] | |
# # # if not netzerohit.empty: | |
# # # netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False) | |
# # # # st.write('-------------------') | |
# # # # st.markdown("###### Netzero paragraph ######") | |
# # # st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'], | |
# # # netzerohit.iloc[0]['text'].replace("\n", " "))) | |
# # # st.write("") | |
# # # else: | |
# # # st.info("🤔 No Netzero paragraph found") | |
# # # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])") | |
# # st.write('-------------------') | |
# # st.markdown("###### Top few Target Classified paragraph/text results ######") | |
# # range_val = min(5,len(hits)) | |
# # for i in range(range_val): | |
# # # the page number reflects the page that contains the main paragraph | |
# # # according to split limit, the overlapping part can be on a separate page | |
# # st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\ | |
# # `GHG: {}`, `Adapt-Mitig :{}`'\ | |
# # .format(i+1,hits.iloc[i]['Relevancy'], | |
# # hits.iloc[i]['page'], hits.iloc[i]['Sector Label'], | |
# # hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label'])) | |
# # st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " "))) | |
# # hits = hits.reset_index(drop =True) | |
# st.write('----------------') | |
# st.caption("Filter table to select rows to keep for Target category") | |
# hits = filter_for_tracs(hits) | |
# convert_type = {'Netzero Label': 'category', | |
# 'Conditional Label':'category', | |
# 'GHG Label':'category', | |
# } | |
# hits = hits.astype(convert_type) | |
# filter_dataframe(hits) | |
# # filtered_df = filtered_df[filtered_df.keep == True] | |
# # st.write('Explore the data') | |
# # AgGrid(hits) | |
# with st.sidebar: | |
# st.write('-------------') | |
# df_xlsx = to_excel(df) | |
# st.download_button(label='📥 Download Result', | |
# data=df_xlsx , | |
# file_name= os.path.splitext(os.path.basename(st.session_state['filename']))[0]+'.xlsx') | |
# # st.write( | |
# # """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/) | |
# # and walks you through one example of how the Streamlit | |
# # Data Science Team builds add-on functions to Streamlit. | |
# # """ | |
# # ) | |
# # def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: | |
# # """ | |
# # Adds a UI on top of a dataframe to let viewers filter columns | |
# # Args: | |
# # df (pd.DataFrame): Original dataframe | |
# # Returns: | |
# # pd.DataFrame: Filtered dataframe | |
# # """ | |
# # modify = st.checkbox("Add filters") | |
# # if not modify: | |
# # st.session_state['target_hits'] = df | |
# # return | |
# # # df = df.copy() | |
# # # st.write(len(df)) | |
# # # Try to convert datetimes into a standard format (datetime, no timezone) | |
# # # for col in df.columns: | |
# # # if is_object_dtype(df[col]): | |
# # # try: | |
# # # df[col] = pd.to_datetime(df[col]) | |
# # # except Exception: | |
# # # pass | |
# # # if is_datetime64_any_dtype(df[col]): | |
# # # df[col] = df[col].dt.tz_localize(None) | |
# # modification_container = st.container() | |
# # with modification_container: | |
# # cols = list(set(df.columns) -{'page','Extracted Text'}) | |
# # cols.sort() | |
# # to_filter_columns = st.multiselect("Filter dataframe on", cols | |
# # ) | |
# # for column in to_filter_columns: | |
# # left, right = st.columns((1, 20)) | |
# # left.write("↳") | |
# # # Treat columns with < 10 unique values as categorical | |
# # if is_categorical_dtype(df[column]): | |
# # # st.write(type(df[column][0]), column) | |
# # user_cat_input = right.multiselect( | |
# # f"Values for {column}", | |
# # df[column].unique(), | |
# # default=list(df[column].unique()), | |
# # ) | |
# # df = df[df[column].isin(user_cat_input)] | |
# # elif is_numeric_dtype(df[column]): | |
# # _min = float(df[column].min()) | |
# # _max = float(df[column].max()) | |
# # step = (_max - _min) / 100 | |
# # user_num_input = right.slider( | |
# # f"Values for {column}", | |
# # _min, | |
# # _max, | |
# # (_min, _max), | |
# # step=step, | |
# # ) | |
# # df = df[df[column].between(*user_num_input)] | |
# # elif is_list_like(df[column]) & (type(df[column][0]) == list) : | |
# # list_vals = set(x for lst in df[column].tolist() for x in lst) | |
# # user_multi_input = right.multiselect( | |
# # f"Values for {column}", | |
# # list_vals, | |
# # default=list_vals, | |
# # ) | |
# # df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input)) | |
# # df = df[df.check == True] | |
# # df.drop(columns = ['check'],inplace=True) | |
# # # df[df[column].between(*user_num_input)] | |
# # # elif is_datetime64_any_dtype(df[column]): | |
# # # user_date_input = right.date_input( | |
# # # f"Values for {column}", | |
# # # value=( | |
# # # df[column].min(), | |
# # # df[column].max(), | |
# # # ), | |
# # # ) | |
# # # if len(user_date_input) == 2: | |
# # # user_date_input = tuple(map(pd.to_datetime, user_date_input)) | |
# # # start_date, end_date = user_date_input | |
# # # df = df.loc[df[column].between(start_date, end_date)] | |
# # else: | |
# # user_text_input = right.text_input( | |
# # f"Substring or regex in {column}", | |
# # ) | |
# # if user_text_input: | |
# # df = df[df[column].str.lower().str.contains(user_text_input)] | |
# # df = df.reset_index(drop=True) | |
# # st.session_state['target_hits'] = df | |
# # df['IKI_Netzero'] = df.apply(lambda x: 'T_NETZERO' if ((x['Netzero Label'] == 'NETZERO TARGET') & | |
# # (x['Conditional Label'] == 'UNCONDITIONAL')) | |
# # else 'T_NETZERO_C' if ((x['Netzero Label'] == 'NETZERO TARGET') & | |
# # (x['Conditional Label'] == 'CONDITIONAL') | |
# # ) | |
# # else None, axis=1 | |
# # ) | |
# # def check_t(s,c): | |
# # temp = [] | |
# # if (('Transport' in s) & (c== 'UNCONDITIONAL')): | |
# # temp.append('T_Transport_Unc') | |
# # if (('Transport' in s) & (c == 'CONDITIONAL')): | |
# # temp.append('T_Transport_C') | |
# # if (('Economy-wide' in s) & (c == 'CONDITIONAL')): | |
# # temp.append('T_Economy_C') | |
# # if (('Economy-wide' in s) & (c == 'UNCONDITIONAL')): | |
# # temp.append('T_Economy_Unc') | |
# # if (('Energy' in s) & (c == 'CONDITIONAL')): | |
# # temp.append('T_Energy_C') | |
# # if (('Energy' in s) & (c == 'UNCONDITIONAL')): | |
# # temp.append('T_Economy_Unc') | |
# # return temp | |
# # df['IKI_Target'] = df.apply(lambda x:check_t(x['Sector Label'], x['Conditional Label']), | |
# # axis=1 ) | |
# # # target_hits = st.session_state['target_hits'] | |
# # df['keep'] = True | |
# # df = df[['text','IKI_Netzero','IKI_Target','Target Score','Netzero Label','GHG Label', | |
# # 'Conditional Label','Sector Label','Adapt-Mitig Label','page','keep']] | |
# # st.dataframe(df) | |
# # # df = st.data_editor( | |
# # # df, | |
# # # column_config={ | |
# # # "keep": st.column_config.CheckboxColumn( | |
# # # help="Select which rows to keep", | |
# # # default=False, | |
# # # ) | |
# # # }, | |
# # # disabled=list(set(df.columns) - {'keep'}), | |
# # # hide_index=True, | |
# # # ) | |
# # # st.write("updating target hits....") | |
# # # st.write(len(df[df.keep == True])) | |
# # st.session_state['target_hits'] = df | |
# # return | |