vulnerability_2_1 / appStore /appStore_target.py
leavoigt's picture
Upload appStore_target.py
d43a0b6
raw
history blame
17.7 kB
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
from utils.target_classifier import load_targetClassifier, target_classification
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
is_list_like)
# Declare all the necessary variables
classifier_identifier = 'target'
params = get_classifier_params(classifier_identifier)
## Labels dictionary ###
_lab_dict = {
'NEGATIVE':'NO TARGET INFO',
'TARGET':'TARGET',
}
# @st.cache_data
def to_excel(df):
# df['Target Validation'] = 'No'
# df['Netzero Validation'] = 'No'
# df['GHG Validation'] = 'No'
# df['Adapt-Mitig Validation'] = 'No'
# df['Sector'] = 'No'
len_df = len(df)
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='rawdata')
if 'target_hits' in st.session_state:
target_hits = st.session_state['target_hits']
if 'keep' in target_hits.columns:
target_hits = target_hits[target_hits.keep == True]
target_hits = target_hits.reset_index(drop=True)
target_hits.drop(columns = ['keep'], inplace=True)
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
else:
target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
target_hits = target_hits.reset_index(drop=True)
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
else:
target_hits = df[df['Target Label'] == True]
target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
'Action Score','Policies_Plans Label','Indicator Label',
'Policies_Plans Score','Conditional Score'],inplace=True)
target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
target_hits = target_hits.reset_index(drop=True)
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
if 'action_hits' in st.session_state:
action_hits = st.session_state['action_hits']
if 'keep' in action_hits.columns:
action_hits = action_hits[action_hits.keep == True]
action_hits = action_hits.reset_index(drop=True)
action_hits.drop(columns = ['keep'], inplace=True)
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
else:
action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
action_hits = action_hits.reset_index(drop=True)
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
else:
action_hits = df[df['Action Label'] == True]
action_hits.drop(columns=['Target Label','Target Score','Netzero Score',
'Netzero Label','GHG Label',
'GHG Score','Action Label','Policies_Plans Label',
'Policies_Plans Score','Conditional Score'],inplace=True)
action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
action_hits = action_hits.reset_index(drop=True)
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
# hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score'])
workbook = writer.book
# worksheet = writer.sheets['Sheet1']
# worksheet.data_validation('L2:L{}'.format(len_df),
# {'validate': 'list',
# 'source': ['No', 'Yes', 'Discard']})
# worksheet.data_validation('M2:L{}'.format(len_df),
# {'validate': 'list',
# 'source': ['No', 'Yes', 'Discard']})
# worksheet.data_validation('N2:L{}'.format(len_df),
# {'validate': 'list',
# 'source': ['No', 'Yes', 'Discard']})
# worksheet.data_validation('O2:L{}'.format(len_df),
# {'validate': 'list',
# 'source': ['No', 'Yes', 'Discard']})
# worksheet.data_validation('P2:L{}'.format(len_df),
# {'validate': 'list',
# 'source': ['No', 'Yes', 'Discard']})
writer.save()
processed_data = output.getvalue()
return processed_data
def app():
### Main app code ###
with st.container():
if 'key0' in st.session_state:
df = st.session_state.key0
#load Classifier
classifier = load_targetClassifier(classifier_name=params['model_name'])
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
if len(df) > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
df = target_classification(haystack_doc=df,
threshold= params['threshold'])
st.session_state.key1 = df
def filter_for_tracs(df):
sector_list = ['Transport','Energy','Economy-wide']
df['check'] = df['Sector Label'].apply(lambda x: any(i in x for i in sector_list))
df = df[df.check == True].reset_index(drop=True)
df['Sector Label'] = df['Sector Label'].apply(lambda x: [i for i in x if i in sector_list])
df.drop(columns = ['check'],inplace=True)
return df
def target_display():
if 'key1' in st.session_state:
df = st.session_state.key1
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(df)))
hits = df[df['Target Label'] == 'TARGET'].reset_index(drop=True)
range_val = min(5,len(hits))
if range_val !=0:
# collecting some statistics
count_target = sum(hits['Target Label'] == 'TARGET')
count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET')
count_ghg = sum(hits['GHG Label'] == 'GHG')
count_transport = sum([True if 'Transport' in x else False
for x in hits['Sector Label']])
c1, c2 = st.columns([1,1])
with c1:
st.write('**Target Paragraphs**: `{}`'.format(count_target))
st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
with c2:
st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport))
# st.write('-------------------')
hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
'Action Score','Policies_Plans Label','Indicator Label',
'Policies_Plans Score','Conditional Score'],inplace=True)
hits = hits.sort_values(by=['Target Score'], ascending=False)
hits = hits.reset_index(drop=True)
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
# if not netzerohit.empty:
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
# # st.write('-------------------')
# # st.markdown("###### Netzero paragraph ######")
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
# netzerohit.iloc[0]['text'].replace("\n", " ")))
# st.write("")
# else:
# st.info("🤔 No Netzero paragraph found")
# # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
# st.write('-------------------')
# st.markdown("###### Top few Target Classified paragraph/text results ######")
# range_val = min(5,len(hits))
# for i in range(range_val):
# # the page number reflects the page that contains the main paragraph
# # according to split limit, the overlapping part can be on a separate page
# st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
# `GHG: {}`, `Adapt-Mitig :{}`'\
# .format(i+1,hits.iloc[i]['Relevancy'],
# hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
# hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))
# st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
# hits = hits.reset_index(drop =True)
st.write('----------------')
st.caption("Filter table to select rows to keep for Target category")
hits = filter_for_tracs(hits)
convert_type = {'Netzero Label': 'category',
'Conditional Label':'category',
'GHG Label':'category',
}
hits = hits.astype(convert_type)
filter_dataframe(hits)
# filtered_df = filtered_df[filtered_df.keep == True]
# st.write('Explore the data')
# AgGrid(hits)
with st.sidebar:
st.write('-------------')
df_xlsx = to_excel(df)
st.download_button(label='📥 Download Result',
data=df_xlsx ,
file_name= os.path.splitext(os.path.basename(st.session_state['filename']))[0]+'.xlsx')
# st.write(
# """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/)
# and walks you through one example of how the Streamlit
# Data Science Team builds add-on functions to Streamlit.
# """
# )
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
modify = st.checkbox("Add filters")
if not modify:
st.session_state['target_hits'] = df
return
# df = df.copy()
# st.write(len(df))
# Try to convert datetimes into a standard format (datetime, no timezone)
# for col in df.columns:
# if is_object_dtype(df[col]):
# try:
# df[col] = pd.to_datetime(df[col])
# except Exception:
# pass
# if is_datetime64_any_dtype(df[col]):
# df[col] = df[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
cols = list(set(df.columns) -{'page','Extracted Text'})
cols.sort()
to_filter_columns = st.multiselect("Filter dataframe on", cols
)
for column in to_filter_columns:
left, right = st.columns((1, 20))
left.write("↳")
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]):
# st.write(type(df[column][0]), column)
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
_min,
_max,
(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_list_like(df[column]) & (type(df[column][0]) == list) :
list_vals = set(x for lst in df[column].tolist() for x in lst)
user_multi_input = right.multiselect(
f"Values for {column}",
list_vals,
default=list_vals,
)
df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
df = df[df.check == True]
df.drop(columns = ['check'],inplace=True)
# df[df[column].between(*user_num_input)]
# elif is_datetime64_any_dtype(df[column]):
# user_date_input = right.date_input(
# f"Values for {column}",
# value=(
# df[column].min(),
# df[column].max(),
# ),
# )
# if len(user_date_input) == 2:
# user_date_input = tuple(map(pd.to_datetime, user_date_input))
# start_date, end_date = user_date_input
# df = df.loc[df[column].between(start_date, end_date)]
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].str.lower().str.contains(user_text_input)]
df = df.reset_index(drop=True)
st.session_state['target_hits'] = df
df['IKI_Netzero'] = df.apply(lambda x: 'T_NETZERO' if ((x['Netzero Label'] == 'NETZERO TARGET') &
(x['Conditional Label'] == 'UNCONDITIONAL'))
else 'T_NETZERO_C' if ((x['Netzero Label'] == 'NETZERO TARGET') &
(x['Conditional Label'] == 'CONDITIONAL')
)
else None, axis=1
)
def check_t(s,c):
temp = []
if (('Transport' in s) & (c== 'UNCONDITIONAL')):
temp.append('T_Transport_Unc')
if (('Transport' in s) & (c == 'CONDITIONAL')):
temp.append('T_Transport_C')
if (('Economy-wide' in s) & (c == 'CONDITIONAL')):
temp.append('T_Economy_C')
if (('Economy-wide' in s) & (c == 'UNCONDITIONAL')):
temp.append('T_Economy_Unc')
if (('Energy' in s) & (c == 'CONDITIONAL')):
temp.append('T_Energy_C')
if (('Energy' in s) & (c == 'UNCONDITIONAL')):
temp.append('T_Economy_Unc')
return temp
df['IKI_Target'] = df.apply(lambda x:check_t(x['Sector Label'], x['Conditional Label']),
axis=1 )
# target_hits = st.session_state['target_hits']
df['keep'] = True
df = df[['text','IKI_Netzero','IKI_Target','Target Score','Netzero Label','GHG Label',
'Conditional Label','Sector Label','Adapt-Mitig Label','page','keep']]
st.dataframe(df)
# df = st.data_editor(
# df,
# column_config={
# "keep": st.column_config.CheckboxColumn(
# help="Select which rows to keep",
# default=False,
# )
# },
# disabled=list(set(df.columns) - {'keep'}),
# hide_index=True,
# )
# st.write("updating target hits....")
# st.write(len(df[df.keep == True]))
st.session_state['target_hits'] = df
return
# df = pd.read_csv(
# "https://raw.githubusercontent.com/mcnakhaee/palmerpenguins/master/palmerpenguins/data/penguins.csv"
# )
# else:
# st.info("🤔 No Targets found")
# count_df = df['Target Label'].value_counts()
# count_df = count_df.rename('count')
# count_df = count_df.rename_axis('Target Label').reset_index()
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
# st.plotly_chart(fig,use_container_width= True)
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
# count_economy = sum([True if 'Economy-wide' in x else False
# for x in hits['Sector Label']])
# # excel part
# temp = df[df['Relevancy']>threshold]
# df['Validation'] = 'No'
# df_xlsx = to_excel(df)
# st.download_button(label='📥 Download Current Result',
# data=df_xlsx ,
# file_name= 'file_target.xlsx')