leavoigt commited on
Commit
57455f3
·
1 Parent(s): 3b0709f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -32
app.py CHANGED
@@ -49,48 +49,58 @@ id2label = {
49
  # Source: https://blog.jcharistech.com/2021/01/21/how-to-save-uploaded-files-to-directory-in-streamlit-apps/
50
 
51
  # Store uploaded file temporarily in directory to get file path (necessary for processing)
52
- def save_uploadedfile(upl_file):
53
- with open(os.path.join("tempDir",upl_file.name),"wb") as f:
54
- f.write(upl_file.getbuffer())
55
- return st.success("Saved File:{} to tempDir".format(upl_file.name))
 
 
 
 
 
 
 
 
 
56
 
57
  if uploaded_file is not None:
58
- # Save the file
59
- file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
60
- save_uploadedfile(uploaded_file)
61
 
62
- #Get the file path
63
-
 
 
 
64
 
65
- par_list = get_paragraphs(uploaded_file)
 
66
 
67
- ### Make predictions
68
- preds = vg_model(par_list)
69
 
70
- # Get label names
71
- preds_list = preds.tolist()
72
 
73
- predictions_names=[]
74
 
75
- # loop through each prediction
76
- for ele in preds_list:
77
- try:
78
- index_of_one = ele.index(1)
79
- except ValueError:
80
- index_of_one = "NA"
81
- if index_of_one != "NA":
82
- name = id2label[index_of_one]
83
- else:
84
- name = "NA"
85
- predictions_names.append(name)
86
 
87
- # Combine the paragraphs and labels to a dataframe
88
- df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
89
 
90
- # Drop all "Other" and "NA" predictions
91
- filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
92
 
93
 
94
- #####################################
95
- st.write(df)
96
 
 
49
  # Source: https://blog.jcharistech.com/2021/01/21/how-to-save-uploaded-files-to-directory-in-streamlit-apps/
50
 
51
  # Store uploaded file temporarily in directory to get file path (necessary for processing)
52
+ # def save_uploadedfile(upl_file):
53
+ # with open(os.path.join("tempDir",upl_file.name),"wb") as f:
54
+ # f.write(upl_file.getbuffer())
55
+ # return st.success("Saved File:{} to tempDir".format(upl_file.name))
56
+
57
+ # if uploaded_file is not None:
58
+ # # Save the file
59
+ # file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
60
+ # save_uploadedfile(uploaded_file)
61
+
62
+ # #Get the file path
63
+
64
+ file = st.file_uploader("File upload", type=["pdf"])
65
 
66
  if uploaded_file is not None:
 
 
 
67
 
68
+ # Retrieve the file name
69
+ with tempfile.NamedTemporaryFile(mode="wb") as temp:
70
+ bytes_data = files.getvalue()
71
+ temp.write(bytes_data)
72
+ print(temp.name)
73
 
74
+ # # Process file
75
+ # par_list = get_paragraphs(uploaded_file)
76
 
77
+ # ### Make predictions
78
+ # preds = vg_model(par_list)
79
 
80
+ # # Get label names
81
+ # preds_list = preds.tolist()
82
 
83
+ # predictions_names=[]
84
 
85
+ # # loop through each prediction
86
+ # for ele in preds_list:
87
+ # try:
88
+ # index_of_one = ele.index(1)
89
+ # except ValueError:
90
+ # index_of_one = "NA"
91
+ # if index_of_one != "NA":
92
+ # name = id2label[index_of_one]
93
+ # else:
94
+ # name = "NA"
95
+ # predictions_names.append(name)
96
 
97
+ # # Combine the paragraphs and labels to a dataframe
98
+ # df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
99
 
100
+ # # Drop all "Other" and "NA" predictions
101
+ # filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
102
 
103
 
104
+ # #####################################
105
+ # st.write(df)
106