|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import os.path as osp |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
import trimesh |
|
from PIL import Image |
|
|
|
from lib.common.render import Render |
|
from lib.dataset.mesh_util import SMPLX, HoppeMesh, projection, rescale_smpl |
|
|
|
cape_gender = { |
|
"male": |
|
['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375', |
|
'03394'], "female": ['00134', '00159', '03223', '03331', '03383'] |
|
} |
|
|
|
|
|
class EvalDataset: |
|
def __init__(self, cfg, device): |
|
|
|
self.root = cfg.root |
|
self.bsize = cfg.batch_size |
|
|
|
self.opt = cfg.dataset |
|
self.datasets = self.opt.types |
|
self.input_size = self.opt.input_size |
|
self.scales = self.opt.scales |
|
self.vol_res = cfg.vol_res |
|
|
|
|
|
self.in_geo = [item[0] for item in cfg.net.in_geo] |
|
self.in_nml = [item[0] for item in cfg.net.in_nml] |
|
|
|
self.in_geo_dim = [item[1] for item in cfg.net.in_geo] |
|
self.in_nml_dim = [item[1] for item in cfg.net.in_nml] |
|
|
|
self.in_total = self.in_geo + self.in_nml |
|
self.in_total_dim = self.in_geo_dim + self.in_nml_dim |
|
|
|
self.rotations = range(0, 360, 120) |
|
|
|
self.datasets_dict = {} |
|
|
|
for dataset_id, dataset in enumerate(self.datasets): |
|
|
|
dataset_dir = osp.join(self.root, dataset) |
|
|
|
mesh_dir = osp.join(dataset_dir, "scans") |
|
smplx_dir = osp.join(dataset_dir, "smplx") |
|
smpl_dir = osp.join(dataset_dir, "smpl") |
|
|
|
self.datasets_dict[dataset] = { |
|
"smplx_dir": smplx_dir, |
|
"smpl_dir": smpl_dir, |
|
"mesh_dir": mesh_dir, |
|
"scale": self.scales[dataset_id], |
|
} |
|
|
|
self.datasets_dict[dataset].update({ |
|
"subjects": |
|
np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str) |
|
}) |
|
|
|
self.subject_list = self.get_subject_list() |
|
self.smplx = SMPLX() |
|
|
|
|
|
self.image_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
]) |
|
|
|
|
|
self.mask_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.0, ), (1.0, )), |
|
]) |
|
|
|
self.device = device |
|
self.render = Render(size=512, device=self.device) |
|
|
|
def render_normal(self, verts, faces): |
|
|
|
|
|
self.render.load_meshes(verts, faces) |
|
return self.render.get_image() |
|
|
|
def get_subject_list(self): |
|
|
|
subject_list = [] |
|
|
|
for dataset in self.datasets: |
|
|
|
split_txt = "" |
|
|
|
if dataset == 'renderpeople': |
|
split_txt = osp.join(self.root, dataset, "loose.txt") |
|
elif dataset == 'cape': |
|
split_txt = osp.join(self.root, dataset, "pose.txt") |
|
|
|
if osp.exists(split_txt) and osp.getsize(split_txt) > 0: |
|
print(f"load from {split_txt}") |
|
subject_list += np.loadtxt(split_txt, dtype=str).tolist() |
|
|
|
return subject_list |
|
|
|
def __len__(self): |
|
return len(self.subject_list) * len(self.rotations) |
|
|
|
def __getitem__(self, index): |
|
|
|
rid = index % len(self.rotations) |
|
mid = index // len(self.rotations) |
|
|
|
rotation = self.rotations[rid] |
|
subject = self.subject_list[mid].split("/")[1] |
|
dataset = self.subject_list[mid].split("/")[0] |
|
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject]) |
|
|
|
if not osp.exists(osp.join(self.root, render_folder)): |
|
render_folder = "/".join([dataset + "_36views", subject]) |
|
|
|
|
|
data_dict = { |
|
"dataset": dataset, |
|
"subject": subject, |
|
"rotation": rotation, |
|
"scale": self.datasets_dict[dataset]["scale"], |
|
"calib_path": osp.join(self.root, render_folder, "calib", f"{rotation:03d}.txt"), |
|
"image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"), |
|
} |
|
|
|
if dataset == "cape": |
|
data_dict.update({ |
|
"mesh_path": |
|
osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"), |
|
"smpl_path": |
|
osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"), |
|
}) |
|
else: |
|
|
|
data_dict.update({ |
|
"mesh_path": |
|
osp.join( |
|
self.datasets_dict[dataset]["mesh_dir"], |
|
f"{subject}.obj", |
|
), |
|
"smplx_path": |
|
osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"), |
|
}) |
|
|
|
|
|
data_dict.update(self.load_calib(data_dict)) |
|
|
|
|
|
for name, channel in zip(self.in_total, self.in_total_dim): |
|
|
|
if f"{name}_path" not in data_dict.keys(): |
|
data_dict.update({ |
|
f"{name}_path": |
|
osp.join(self.root, render_folder, name, f"{rotation:03d}.png") |
|
}) |
|
|
|
|
|
if os.path.exists(data_dict[f"{name}_path"]): |
|
data_dict.update({ |
|
name: |
|
self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False) |
|
}) |
|
|
|
data_dict.update(self.load_mesh(data_dict)) |
|
data_dict.update(self.load_smpl(data_dict)) |
|
|
|
del data_dict["mesh"] |
|
|
|
return data_dict |
|
|
|
def imagepath2tensor(self, path, channel=3, inv=False): |
|
|
|
rgba = Image.open(path).convert("RGBA") |
|
|
|
|
|
if "cape" in path and "T_" not in path: |
|
mask = cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1 |
|
img = np.asarray(rgba)[:, :, :3] |
|
fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8) |
|
image = Image.fromarray( |
|
cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA) |
|
) |
|
mask = Image.fromarray(mask) |
|
else: |
|
mask = rgba.split()[-1] |
|
image = rgba.convert("RGB") |
|
|
|
image = self.image_to_tensor(image) |
|
mask = self.mask_to_tensor(mask) |
|
image = (image * mask)[:channel] |
|
|
|
return (image * (0.5 - inv) * 2.0).float() |
|
|
|
def load_calib(self, data_dict): |
|
calib_data = np.loadtxt(data_dict["calib_path"], dtype=float) |
|
extrinsic = calib_data[:4, :4] |
|
intrinsic = calib_data[4:8, :4] |
|
calib_mat = np.matmul(intrinsic, extrinsic) |
|
calib_mat = torch.from_numpy(calib_mat).float() |
|
return {"calib": calib_mat} |
|
|
|
def load_mesh(self, data_dict): |
|
|
|
mesh_path = data_dict["mesh_path"] |
|
scale = data_dict["scale"] |
|
|
|
scan_mesh = trimesh.load(mesh_path) |
|
verts = scan_mesh.vertices |
|
faces = scan_mesh.faces |
|
|
|
mesh = HoppeMesh(verts * scale, faces) |
|
|
|
return { |
|
"mesh": mesh, |
|
"verts": torch.as_tensor(verts * scale).float(), |
|
"faces": torch.as_tensor(faces).long(), |
|
} |
|
|
|
def load_smpl(self, data_dict): |
|
|
|
smpl_type = ("smplx" if ("smplx_path" in data_dict.keys()) else "smpl") |
|
|
|
smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0) |
|
smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long() |
|
smplx_verts = projection(smplx_verts, data_dict["calib"]).float() |
|
|
|
return_dict = { |
|
"smpl_verts": smplx_verts, |
|
"smpl_faces": smplx_faces, |
|
} |
|
|
|
return return_dict |
|
|
|
def depth_to_voxel(self, data_dict): |
|
|
|
data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"]) |
|
data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"]) |
|
|
|
depth_mask = (~torch.isnan(data_dict['depth_F'])) |
|
depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0) |
|
depth_FB[:, ~depth_mask[0]] = 0. |
|
|
|
|
|
index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res - |
|
1).permute(1, 2, 0) |
|
index_z_ceil = torch.ceil(index_z).long() |
|
index_z_floor = torch.floor(index_z).long() |
|
index_z_frac = torch.frac(index_z) |
|
|
|
index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long() |
|
voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \ |
|
F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \ |
|
F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \ |
|
F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1]) |
|
|
|
voxels[index_mask] *= 0 |
|
voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float() |
|
|
|
return { |
|
"depth_voxels": voxels.flip([ |
|
0, |
|
]).unsqueeze(0).to(self.device), |
|
} |
|
|
|
def render_depth(self, verts, faces): |
|
|
|
|
|
self.render.load_meshes(verts, faces) |
|
return self.render.get_image(type="depth") |
|
|