|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pytorch_lightning as pl |
|
from torch.utils.data import DataLoader |
|
|
|
from lib.dataset.NormalDataset import NormalDataset |
|
|
|
|
|
class NormalModule(pl.LightningDataModule): |
|
def __init__(self, cfg): |
|
super(NormalModule, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.batch_size = self.cfg.batch_size |
|
|
|
self.data_size = {} |
|
|
|
def prepare_data(self): |
|
|
|
pass |
|
|
|
def setup(self, stage): |
|
|
|
self.train_dataset = NormalDataset(cfg=self.cfg, split="train") |
|
self.val_dataset = NormalDataset(cfg=self.cfg, split="val") |
|
self.test_dataset = NormalDataset(cfg=self.cfg, split="test") |
|
|
|
self.data_size = { |
|
"train": len(self.train_dataset), |
|
"val": len(self.val_dataset), |
|
} |
|
|
|
def train_dataloader(self): |
|
|
|
train_data_loader = DataLoader( |
|
self.train_dataset, |
|
batch_size=self.batch_size, |
|
shuffle=True, |
|
num_workers=self.cfg.num_threads, |
|
pin_memory=True, |
|
) |
|
|
|
return train_data_loader |
|
|
|
def val_dataloader(self): |
|
|
|
val_data_loader = DataLoader( |
|
self.val_dataset, |
|
batch_size=self.batch_size, |
|
shuffle=False, |
|
num_workers=self.cfg.num_threads, |
|
pin_memory=True, |
|
) |
|
|
|
return val_data_loader |
|
|
|
def val_dataloader(self): |
|
|
|
test_data_loader = DataLoader( |
|
self.test_dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=self.cfg.num_threads, |
|
pin_memory=True, |
|
) |
|
|
|
return test_data_loader |
|
|