Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,13 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/1goHcmXF0Gc4_X9PN-zecV77j9KeI6Dmn
|
8 |
"""
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#!pip install torch transformers accelerate einops
|
13 |
|
14 |
-
#!pip install peft
|
15 |
|
16 |
import gradio as gr
|
17 |
|
@@ -22,7 +24,6 @@ from transformers import (
|
|
22 |
TextIteratorStreamer,
|
23 |
pipeline,
|
24 |
)
|
25 |
-
from threading import Thread
|
26 |
|
27 |
# The huggingface model id for Microsoft's phi-2 model
|
28 |
# Download and load model and tokenizer
|
@@ -32,8 +33,8 @@ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=T
|
|
32 |
from peft import PeftModel, PeftConfig
|
33 |
|
34 |
config = PeftConfig.from_pretrained("mudogruer/phi-2-SciQ")
|
35 |
-
|
36 |
-
model = PeftModel.from_pretrained(
|
37 |
|
38 |
# Text generation pipeline
|
39 |
phi2 = pipeline(
|
@@ -45,79 +46,22 @@ phi2 = pipeline(
|
|
45 |
device_map="cpu",
|
46 |
)
|
47 |
|
48 |
-
|
49 |
-
# Function that accepts a prompt and generates text using the phi2 pipeline
|
50 |
-
def generate(message, chat_history, max_new_tokens):
|
51 |
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
|
52 |
-
final_prompt = f"Instruction: {instruction}\
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# ):
|
65 |
-
# final_prompt = "Instruction: Say 'Input exceeded context size, please clear the chat history and retry!' Output:"
|
66 |
-
|
67 |
-
# Streamer
|
68 |
-
streamer = TextIteratorStreamer(
|
69 |
-
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0
|
70 |
-
)
|
71 |
-
thread = Thread(
|
72 |
-
target=phi2,
|
73 |
-
kwargs={
|
74 |
-
"text_inputs": final_prompt,
|
75 |
-
"max_new_tokens": max_new_tokens,
|
76 |
-
"streamer": streamer,
|
77 |
-
},
|
78 |
-
)
|
79 |
-
thread.start()
|
80 |
-
|
81 |
-
generated_text = ""
|
82 |
-
for word in streamer:
|
83 |
-
generated_text += word
|
84 |
-
response = generated_text.strip()
|
85 |
-
|
86 |
-
if "User:" in response:
|
87 |
-
response = response.split("User:")[0].strip()
|
88 |
-
|
89 |
-
if "Assistant:" in response:
|
90 |
-
response = response.split("Assistant:")[1].strip()
|
91 |
-
|
92 |
-
yield response
|
93 |
-
|
94 |
-
|
95 |
-
# Chat interface with gradio
|
96 |
with gr.Blocks() as demo:
|
97 |
-
gr.Markdown(
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
Phi-2 model was fine-tuned with questions including highschool level physics chemistry biology QA using SciQ dataset. In order to reduce the response time on this hardware, `max_new_tokens` has been set to `21` in the text generation pipeline. With this default configuration, it takes approximately `60 seconds` for the response to start being generated, and streamed one word at a time. Use the slider below to increase or decrease the length of the generated text.
|
103 |
-
|
104 |
-
For the safetensor: huggingface.co/mudogruer
|
105 |
-
"""
|
106 |
-
)
|
107 |
-
|
108 |
-
tokens_slider = gr.Slider(
|
109 |
-
8,
|
110 |
-
128,
|
111 |
-
value=21,
|
112 |
-
label="Maximum new tokens",
|
113 |
-
info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.",
|
114 |
-
)
|
115 |
-
|
116 |
-
chatbot = gr.ChatInterface(
|
117 |
-
fn=generate,
|
118 |
-
additional_inputs=[tokens_slider],
|
119 |
-
stop_btn=None,
|
120 |
-
examples=[["Who is Leonhard Euler?"]],
|
121 |
-
)
|
122 |
-
|
123 |
-
demo.queue().launch()
|
|
|
7 |
https://colab.research.google.com/drive/1goHcmXF0Gc4_X9PN-zecV77j9KeI6Dmn
|
8 |
"""
|
9 |
|
10 |
+
# !pip install -q -U gradio
|
11 |
+
# !pip install -q -U torch transformers accelerate einops
|
12 |
+
# !pip install -q peft
|
13 |
+
|
14 |
+
|
15 |
|
|
|
16 |
|
|
|
17 |
|
18 |
import gradio as gr
|
19 |
|
|
|
24 |
TextIteratorStreamer,
|
25 |
pipeline,
|
26 |
)
|
|
|
27 |
|
28 |
# The huggingface model id for Microsoft's phi-2 model
|
29 |
# Download and load model and tokenizer
|
|
|
33 |
from peft import PeftModel, PeftConfig
|
34 |
|
35 |
config = PeftConfig.from_pretrained("mudogruer/phi-2-SciQ")
|
36 |
+
base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
|
37 |
+
model = PeftModel.from_pretrained(base_model, "mudogruer/phi-2-SciQ")
|
38 |
|
39 |
# Text generation pipeline
|
40 |
phi2 = pipeline(
|
|
|
46 |
device_map="cpu",
|
47 |
)
|
48 |
|
49 |
+
def generate(message, max_new_tokens):
|
|
|
|
|
50 |
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
|
51 |
+
final_prompt = f"Instruction: {instruction}\nUser: {message}\nOutput:"
|
52 |
+
|
53 |
+
# Generate text synchronously
|
54 |
+
response = phi2(final_prompt, max_new_tokens=max_new_tokens)
|
55 |
+
generated_text = response[0]['generated_text']
|
56 |
+
|
57 |
+
# Process to extract the last assistant's response
|
58 |
+
# Assuming the last line after 'Output:' is the response
|
59 |
+
last_response = generated_text.split('Output:')[-1].strip()
|
60 |
+
return last_response
|
61 |
+
|
62 |
+
# Update the Gradio interface setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("""### Phi-2 Scientific Question Chatbot""")
|
65 |
+
tokens_slider = gr.Slider(8, 128, value=21, label="Maximum new tokens")
|
66 |
+
chatbot = gr.Interface(fn=generate, inputs=["text", tokens_slider], outputs="text")
|
67 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|