Spaces:
Running
Running
File size: 12,457 Bytes
c9e768e 2b68830 c9e768e 2b68830 c9e768e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
---
title: "Hugging Face Accelerate: Making device-agnostic ML training and inference easy at scale"
format:
revealjs:
theme: moon
fig-format: png
auto-play-media: true
---
## Who am I?
- Zachary Mueller
- Technical Lead for the π€ Accelerate project
- Maintain the `transformers` Trainer
- API design geek
## What is π€ Accelerate?
* A training framework
* An inference framework
* A command-line interface
## A Training Framework
* Powered by PyTorch
* Change a few lines of code, gain device *and* hardware-agnostic capabilities
* Low-code, with minimal magic aimed at easy hackability and use without high-level abstractions
* We handle the intracies so you don't have to
## A Training Framework
::: {style="font-size: 70%;"}
* Support for any hardware-accelerator on the market:
* CPU, GPU, TPU, XPU, NPU, MLU
* Automatic mixed-precision training *safely* in whatever fashion you may choose:
* FP16, BF16, FP8 (through either `TransformerEngine` or `MS-AMP`)
* Automatic and efficient gradient accumulation
* Support for quantization through `bitsandbytes`
* Support your favorite experiment trackers (`aim`, `clearml`, `comet_ml`, `dvc-lite`, `ml-flow`, `tensorboard`, `wandb`)
* Easy to configure plugin or YAML-level API for setting up advanced frameworks like `FSDP`, `DeepSpeed`, and `Megatron-LM`
:::
## Low-Code
::: {style="font-size: 70%;"}
* Biggest friction with "wrapper" libraries is control of your code
* By being minimally intrusive, your code just "works" while still giving you complete control
:::
::: {style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%"}
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
+ from accelerate import Accelerator
+ accelerator = Accelerator()
- device = 'cpu'
+ device = accelerator.device
model = torch.nn.Transformer().to(device)
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
model.train()
for epoch in range(10):
for source, targets in dataloader:
source, targets = source.to(device), targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
:::
## Easy to integrate
::: {style="font-size: 70%;"}
* Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
1. Create an `Accelerator`
:::
::: {style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%"}
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
+ from accelerate import Accelerator
+ accelerator = Accelerator()
device = 'cpu'
model = torch.nn.Transformer().to(device)
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
model.train()
for epoch in range(10):
for source, targets in dataloader:
source, targets = source.to(device), targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
loss.backward()
optimizer.step()
```
:::
## Easy to integrate
::: {style="font-size: 70%;"}
* Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
2. Wrap your PyTorch objects with `accelerator.prepare` and remove device-placements
:::
::: {style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%"}
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
from accelerate import Accelerator
accelerator = Accelerator()
- device = 'cpu'
model = torch.nn.Transformer().to(device)
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
model.train()
for epoch in range(10):
for source, targets in dataloader:
source, targets = source.to(device), targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
loss.backward()
optimizer.step()
```
:::
## Easy to integrate
::: {style="font-size: 70%;"}
* Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
3. Use `accelerator.backward` for the backward pass
:::
::: {style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%"}
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
from accelerate import Accelerator
accelerator = Accelerator()
model = torch.nn.Transformer().to(device)
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
model.train()
for epoch in range(10):
for source, targets in dataloader:
source, targets = source.to(device), targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
:::
## But what about inference?
* π€ Accelerate is not just for training, and has helped make the GPU-Poor take control of the narrative
* Using tools like Big Model Inference, users with *tiny* compute can run large models locally
* Started with the boom of stable diffusion, and now has scaled to having the ability to run huge LLMs locally with a single graphics card
## How does it work?
* PyTorch introduced `device="meta"`
* π€ Accelerate introduced `device_map="auto"`
::: {style="padding-left:15%;padding-right:20%"}
{{< video big_model_visualization.mp4 width="800" height="400" >}}
:::
## A CLI Interface
* `accelerate config`
* Configure the environment
* `accelerate launch`
* How to run your script
## Launching distributed training is hard
::: {style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%"}
```bash
python script.py
```
:::
::: {style="padding-left:50%;padding-bottom:0%;padding-top:0%;"}
vs.
:::
<br>
::: {style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%"}
```bash
torchrun --nnodes=1 --nproc_per_node=2 script.py
```
:::
::: {style="padding-left:50%;padding-bottom:0%;padding-top:0%;"}
vs.
:::
<br>
::: {style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%"}
```bash
deepspeed --num_gpus=2 script.py
```
<br>
:::
How can we make this better?
## `accelerate launch`
::: {style="padding-top:0%;padding-left:5%;padding-right:10%;padding-bottom:0%"}
```bash
accelerate launch script.py
```
<br>
```bash
accelerate launch --multi_gpu --num_processes 2 script.py
```
<br>
```bash
accelerate launch \
--multi_gpu \
--use_deepspeed \
--num_processes 2 \
script.py
```
:::
## `accelerate config`
* Rely on `config.yaml` files
* Choose to either running `accelerate config` or write your own:
:::: {.columns style="font-size: 60%;padding-left:5%;padding-right:5%"}
::: {.column width="40%"}
```{.yaml filename=ddp_config.yaml}
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 8
```
:::
::: {.column width="40%"}
```{.yaml filename=fsdp_config.yaml}
compute_environment: LOCAL_MACHINE
distributed_type: FSDP
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 8
```
:::
::::
# Now that you're up to speed, what's new?
# We've had a busy last year, and so has the ML Community!
## New training techniques
- Quantization has taken the field by storm
- New ideas such as FSDP + QLoRA to train huge models on tiny compute!
- New precision backends as we train natively on smaller precision
- Optimizing futher how much we can push on a single machine through efficient RAM and timing techniques
## Larger compute landscape
- As we search for alternatives to NVIDIA, new compilers rise:
- XPU (Intel)
- NPU (Intel)
- MLU (Cambricon)
All of which are supported by π€ Accelerate
## Lower abstractions
* While the `Accelerator` was great, needed better abstractions focused on controlling behaviors
* Introduced the `PartialState`
::: {style="padding-left:10%;padding-top:0%;padding-right:15%"}
```python
from accelerate import PartialState
if PartialState().is_main_process:
# Run on only 1 device
with PartialState().main_process_first:
# Useful for dataset processing
# Device-agnostic without the bulk of the `Accelerator`
device = PartialState().device
```
:::
## Faster and better inference alternatives
::: {style="font-size:70%"}
- `PiPPy` gives us efficient pipeline-parallelism in distributed environments to increase throughput while keeping a simple torch-bound API
- Rather than having to wait for each GPU, every GPU can be busy in parallel
- Will be critical as larger LLMs take hold and more than one computer is needed
:::
::: {style="font-size:60%;padding-left:19%;padding-top:0%;padding-right:24%;"}
```python
import torch
from transformers import AutoModelForSequenceClassification
from accelerate import PartialState, prepare_pippy
model = AutoModelForSequenceClassification.from_pretrained("gpt2")
model.eval()
input = torch.randint(
low=0,
high=model.config.vocab_size,
size=(2, 1024), # bs x seq_len
device="cpu",
)
model = prepare_pippy(model, split_points="auto", example_args=(input,))
with torch.no_grad():
output = model(input)
```
:::
# Adoption: Accelerate in the ecosystem
## Accelerate in the Ecosystem
* Many of the frameworks you use daily already rely on π€ Accelerate!
* Nearly all of π€
* `axolotl`
* `fastai`
* `FastChat`
* `lucidrains`
* `kornia`
## Accelerate in the Ecosystem
::: {style="font-size: 70%;"}
- Started as a way to isolate out distributed code on TPU and `DistributedDataParallelism`
:::
::: {style="padding-left: 30%"}
![](sylvain_tweet.JPG){width="70%"}
:::
## Accelerate in the Ecosystem
::: {style="font-size: 70%;"}
- Now is the backbone of some of the largest PyTorch training frameworks in the ecosystem
:::
::: {style="padding-left: 30%;"}
![](hf_trainer.JPG){width="70%"}
:::
# What's next?
# Elevating the community
* Now that more advanced training techniques are reachable (FSDP, DeepSpeed, etc), we need to focus on educating the community on how to use it best
* Goes beyond how to use the `Trainer` or `Accelerator`, but how to use *what* where
* Keep Accelerate as a tool for the community to utilize when new techniques come out and play with, to push new ideas to scale quickly
# 1.0.0: Soon!
* Tried and battle-tested by over 7M users/month | 110M+ total downloads
* As we've been stable for over a year now, we're near ready to release 1.0.0
# Thanks for joining!
::: {style="font-size: 70%;"}
- [π€ Accelerate documentation](https://hf.co/docs/accelerate)
- [Launching distributed code](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
- [Distributed code and Jupyter Notebooks](https://huggingface.co/docs/accelerate/basic_tutorials/notebook)
- [Migrating to π€ Accelerate easily](https://huggingface.co/docs/accelerate/basic_tutorials/migration)
- [Big Model Inference tutorial](https://huggingface.co/docs/accelerate/usage_guides/big_modeling)
- [DeepSpeed and π€ Accelerate](https://huggingface.co/docs/accelerate/usage_guides/deepspeed)
- [Fully Sharded Data Parallelism and π€ Accelerate](https://huggingface.co/docs/accelerate/usage_guides/fsdp)
- [FSDP vs DeepSpeed In-Depth](https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed)
::: |