|
<!DOCTYPE html> |
|
<html lang="en"><head> |
|
<script src="Accelerate_files/libs/clipboard/clipboard.min.js"></script> |
|
<script src="Accelerate_files/libs/quarto-html/tabby.min.js"></script> |
|
<script src="Accelerate_files/libs/quarto-html/popper.min.js"></script> |
|
<script src="Accelerate_files/libs/quarto-html/tippy.umd.min.js"></script> |
|
<link href="Accelerate_files/libs/quarto-html/tippy.css" rel="stylesheet"> |
|
<link href="Accelerate_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light"> |
|
<link href="Accelerate_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8"> |
|
<meta name="generator" content="quarto-1.2.237"> |
|
|
|
<meta name="author" content="Zachary Mueller"> |
|
<title>Accelerate, Three Powerful Sublibraries for PyTorch</title> |
|
<meta name="apple-mobile-web-app-capable" content="yes"> |
|
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"> |
|
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reset.css"> |
|
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reveal.css"> |
|
<style> |
|
code{white-space: pre-wrap;} |
|
span.smallcaps{font-variant: small-caps;} |
|
div.columns{display: flex; gap: min(4vw, 1.5em);} |
|
div.column{flex: auto; overflow-x: auto;} |
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} |
|
ul.task-list{list-style: none;} |
|
ul.task-list li input[type="checkbox"] { |
|
width: 0.8em; |
|
margin: 0 0.8em 0.2em -1.6em; |
|
vertical-align: middle; |
|
} |
|
pre > code.sourceCode { white-space: pre; position: relative; } |
|
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; } |
|
pre > code.sourceCode > span:empty { height: 1.2em; } |
|
.sourceCode { overflow: visible; } |
|
code.sourceCode > span { color: inherit; text-decoration: inherit; } |
|
div.sourceCode { margin: 1em 0; } |
|
pre.sourceCode { margin: 0; } |
|
@media screen { |
|
div.sourceCode { overflow: auto; } |
|
} |
|
@media print { |
|
pre > code.sourceCode { white-space: pre-wrap; } |
|
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } |
|
} |
|
pre.numberSource code |
|
{ counter-reset: source-line 0; } |
|
pre.numberSource code > span |
|
{ position: relative; left: -4em; counter-increment: source-line; } |
|
pre.numberSource code > span > a:first-child::before |
|
{ content: counter(source-line); |
|
position: relative; left: -1em; text-align: right; vertical-align: baseline; |
|
border: none; display: inline-block; |
|
-webkit-touch-callout: none; -webkit-user-select: none; |
|
-khtml-user-select: none; -moz-user-select: none; |
|
-ms-user-select: none; user-select: none; |
|
padding: 0 4px; width: 4em; |
|
} |
|
pre.numberSource { margin-left: 3em; padding-left: 4px; } |
|
div.sourceCode |
|
{ color: #f8f8f2; } |
|
@media screen { |
|
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } |
|
} |
|
code span { color: #f8f8f2; } |
|
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } |
|
code span.an { color: #d4d0ab; } |
|
code span.at { color: #00e0e0; } |
|
code span.bn { color: #d4d0ab; } |
|
code span.bu { color: #abe338; } |
|
code span.cf { color: #ffa07a; font-weight: bold; } |
|
code span.ch { color: #abe338; } |
|
code span.cn { color: #ffd700; } |
|
code span.co { color: #f8f8f2; font-style: italic; } |
|
code span.cv { color: #ffd700; } |
|
code span.do { color: #f8f8f2; } |
|
code span.dt { color: #ffa07a; } |
|
code span.dv { color: #d4d0ab; } |
|
code span.er { color: #f07178; text-decoration: underline; } |
|
code span.ex { color: #00e0e0; font-weight: bold; } |
|
code span.fl { color: #d4d0ab; } |
|
code span.fu { color: #ffa07a; } |
|
code span.im { color: #abe338; } |
|
code span.in { color: #d4d0ab; } |
|
code span.kw { color: #ffa07a; font-weight: bold; } |
|
code span.op { color: #ffa07a; } |
|
code span.ot { color: #00e0e0; } |
|
code span.pp { color: #dcc6e0; } |
|
code span.re { color: #00e0e0; background-color: #f8f8f2; } |
|
code span.sc { color: #abe338; } |
|
code span.ss { color: #abe338; } |
|
code span.st { color: #abe338; } |
|
code span.va { color: #00e0e0; } |
|
code span.vs { color: #abe338; } |
|
code span.wa { color: #dcc6e0; } |
|
</style> |
|
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/theme/quarto.css" id="theme"> |
|
<link href="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet"> |
|
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet"> |
|
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet"> |
|
<link href="Accelerate_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet"> |
|
<style type="text/css"> |
|
|
|
.callout { |
|
margin-top: 1em; |
|
margin-bottom: 1em; |
|
border-radius: .25rem; |
|
} |
|
|
|
.callout.callout-style-simple { |
|
padding: 0em 0.5em; |
|
border-left: solid #acacac .3rem; |
|
border-right: solid 1px silver; |
|
border-top: solid 1px silver; |
|
border-bottom: solid 1px silver; |
|
display: flex; |
|
} |
|
|
|
.callout.callout-style-default { |
|
border-left: solid #acacac .3rem; |
|
border-right: solid 1px silver; |
|
border-top: solid 1px silver; |
|
border-bottom: solid 1px silver; |
|
} |
|
|
|
.callout .callout-body-container { |
|
flex-grow: 1; |
|
} |
|
|
|
.callout.callout-style-simple .callout-body { |
|
font-size: 1rem; |
|
font-weight: 400; |
|
} |
|
|
|
.callout.callout-style-default .callout-body { |
|
font-size: 0.9rem; |
|
font-weight: 400; |
|
} |
|
|
|
.callout.callout-captioned.callout-style-simple .callout-body { |
|
margin-top: 0.2em; |
|
} |
|
|
|
.callout:not(.callout-captioned) .callout-body { |
|
display: flex; |
|
} |
|
|
|
.callout:not(.no-icon).callout-captioned.callout-style-simple .callout-content { |
|
padding-left: 1.6em; |
|
} |
|
|
|
.callout.callout-captioned .callout-header { |
|
padding-top: 0.2em; |
|
margin-bottom: -0.2em; |
|
} |
|
|
|
.callout.callout-captioned .callout-caption p { |
|
margin-top: 0.5em; |
|
margin-bottom: 0.5em; |
|
} |
|
|
|
.callout.callout-captioned.callout-style-simple .callout-content p { |
|
margin-top: 0; |
|
} |
|
|
|
.callout.callout-captioned.callout-style-default .callout-content p { |
|
margin-top: 0.7em; |
|
} |
|
|
|
.callout.callout-style-simple div.callout-caption { |
|
border-bottom: none; |
|
font-size: .9rem; |
|
font-weight: 600; |
|
opacity: 75%; |
|
} |
|
|
|
.callout.callout-style-default div.callout-caption { |
|
border-bottom: none; |
|
font-weight: 600; |
|
opacity: 85%; |
|
font-size: 0.9rem; |
|
padding-left: 0.5em; |
|
padding-right: 0.5em; |
|
} |
|
|
|
.callout.callout-style-default div.callout-content { |
|
padding-left: 0.5em; |
|
padding-right: 0.5em; |
|
} |
|
|
|
.callout.callout-style-simple .callout-icon::before { |
|
height: 1rem; |
|
width: 1rem; |
|
display: inline-block; |
|
content: ""; |
|
background-repeat: no-repeat; |
|
background-size: 1rem 1rem; |
|
} |
|
|
|
.callout.callout-style-default .callout-icon::before { |
|
height: 0.9rem; |
|
width: 0.9rem; |
|
display: inline-block; |
|
content: ""; |
|
background-repeat: no-repeat; |
|
background-size: 0.9rem 0.9rem; |
|
} |
|
|
|
.callout-caption { |
|
display: flex |
|
} |
|
|
|
.callout-icon::before { |
|
margin-top: 1rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
.callout.no-icon::before { |
|
display: none !important; |
|
} |
|
|
|
.callout.callout-captioned .callout-body > .callout-content > :last-child { |
|
margin-bottom: 0.5rem; |
|
} |
|
|
|
.callout.callout-captioned .callout-icon::before { |
|
margin-top: .5rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
.callout:not(.callout-captioned) .callout-icon::before { |
|
margin-top: 1rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
|
|
|
|
div.callout-note { |
|
border-left-color: #4582ec !important; |
|
} |
|
|
|
div.callout-note .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-note.callout-style-default .callout-caption { |
|
background-color: #dae6fb |
|
} |
|
|
|
div.callout-important { |
|
border-left-color: #d9534f !important; |
|
} |
|
|
|
div.callout-important .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-important.callout-style-default .callout-caption { |
|
background-color: #f7dddc |
|
} |
|
|
|
div.callout-warning { |
|
border-left-color: #f0ad4e !important; |
|
} |
|
|
|
div.callout-warning .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-warning.callout-style-default .callout-caption { |
|
background-color: #fcefdc |
|
} |
|
|
|
div.callout-tip { |
|
border-left-color: #02b875 !important; |
|
} |
|
|
|
div.callout-tip .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-tip.callout-style-default .callout-caption { |
|
background-color: #ccf1e3 |
|
} |
|
|
|
div.callout-caution { |
|
border-left-color: #fd7e14 !important; |
|
} |
|
|
|
div.callout-caution .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-caution.callout-style-default .callout-caption { |
|
background-color: #ffe5d0 |
|
} |
|
|
|
</style> |
|
<style type="text/css"> |
|
.reveal div.sourceCode { |
|
margin: 0; |
|
overflow: auto; |
|
} |
|
.reveal div.hanging-indent { |
|
margin-left: 1em; |
|
text-indent: -1em; |
|
} |
|
.reveal .slide:not(.center) { |
|
height: 100%; |
|
} |
|
.reveal .slide.scrollable { |
|
overflow-y: auto; |
|
} |
|
.reveal .footnotes { |
|
height: 100%; |
|
overflow-y: auto; |
|
} |
|
.reveal .slide .absolute { |
|
position: absolute; |
|
display: block; |
|
} |
|
.reveal .footnotes ol { |
|
counter-reset: ol; |
|
list-style-type: none; |
|
margin-left: 0; |
|
} |
|
.reveal .footnotes ol li:before { |
|
counter-increment: ol; |
|
content: counter(ol) ". "; |
|
} |
|
.reveal .footnotes ol li > p:first-child { |
|
display: inline-block; |
|
} |
|
.reveal .slide ul, |
|
.reveal .slide ol { |
|
margin-bottom: 0.5em; |
|
} |
|
.reveal .slide ul li, |
|
.reveal .slide ol li { |
|
margin-top: 0.4em; |
|
margin-bottom: 0.2em; |
|
} |
|
.reveal .slide ul[role="tablist"] li { |
|
margin-bottom: 0; |
|
} |
|
.reveal .slide ul li > *:first-child, |
|
.reveal .slide ol li > *:first-child { |
|
margin-block-start: 0; |
|
} |
|
.reveal .slide ul li > *:last-child, |
|
.reveal .slide ol li > *:last-child { |
|
margin-block-end: 0; |
|
} |
|
.reveal .slide .columns:nth-child(3) { |
|
margin-block-start: 0.8em; |
|
} |
|
.reveal blockquote { |
|
box-shadow: none; |
|
} |
|
.reveal .tippy-content>* { |
|
margin-top: 0.2em; |
|
margin-bottom: 0.7em; |
|
} |
|
.reveal .tippy-content>*:last-child { |
|
margin-bottom: 0.2em; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-center, |
|
.reveal .slide > img.r-stretch.quarto-figure-center { |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-left, |
|
.reveal .slide > img.r-stretch.quarto-figure-left { |
|
display: block; |
|
margin-left: 0; |
|
margin-right: auto; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-right, |
|
.reveal .slide > img.r-stretch.quarto-figure-right { |
|
display: block; |
|
margin-left: auto; |
|
margin-right: 0; |
|
} |
|
</style> |
|
<script src="Accelerate_files/libs/quarto-diagram/mermaid.min.js"></script> |
|
<script src="Accelerate_files/libs/quarto-diagram/mermaid-init.js"></script> |
|
<link href="Accelerate_files/libs/quarto-diagram/mermaid.css" rel="stylesheet"> |
|
</head> |
|
<body class="quarto-dark"> |
|
<div class="reveal"> |
|
<div class="slides"> |
|
|
|
<section id="title-slide" class="quarto-title-block center"> |
|
<h1 class="title">Accelerate, Three Powerful Sublibraries for PyTorch</h1> |
|
|
|
<div class="quarto-title-authors"> |
|
<div class="quarto-title-author"> |
|
<div class="quarto-title-author-name"> |
|
Zachary Mueller |
|
</div> |
|
</div> |
|
</div> |
|
|
|
</section> |
|
<section id="who-am-i" class="slide level2"> |
|
<h2>Who am I?</h2> |
|
<ul> |
|
<li>Zachary Mueller</li> |
|
<li>Deep Learning Software Engineer at 🤗</li> |
|
<li>API design geek</li> |
|
</ul> |
|
</section> |
|
<section id="what-is-accelerate" class="slide level2"> |
|
<h2>What is 🤗 Accelerate?</h2> |
|
<div class="cell" data-reveal="true" data-fig-height="6"> |
|
<div class="cell-output-display"> |
|
<div> |
|
<p> |
|
</p><pre class="mermaid mermaid-js" data-tooltip-selector="#mermaid-tooltip-1">graph LR |
|
A{"🤗 Accelerate#32;"} |
|
A --> B["Launching<br>Interface#32;"] |
|
A --> C["Training Library#32;"] |
|
A --> D["Big Model<br>Inference#32;"] |
|
</pre> |
|
<div id="mermaid-tooltip-1" class="mermaidTooltip"> |
|
|
|
</div> |
|
<p></p> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
<section> |
|
<section id="a-launching-interface" class="title-slide slide level1 center"> |
|
<h1>A Launching Interface</h1> |
|
<p>Can’t I just use <code>python do_the_thing.py</code>?</p> |
|
</section> |
|
<section id="a-launching-interface-1" class="slide level2"> |
|
<h2>A Launching Interface</h2> |
|
<p>Launching scripts in different environments is complicated:</p> |
|
<ul> |
|
<li><div class="sourceCode" id="cb1"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
</ul> |
|
<p>And more!</p> |
|
</section> |
|
<section id="a-launching-interface-2" class="slide level2"> |
|
<h2>A Launching Interface</h2> |
|
<p>But it doesn’t have to be:</p> |
|
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<p>A single command to launch with <code>DeepSpeed</code>, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs<sup>1</sup> too!</p> |
|
<aside><ol class="aside-footnotes"><li id="fn1"><p>Without needing to modify your code and create a <code>_mp_fn</code></p></li></ol></aside></section> |
|
<section id="a-launching-interface-3" class="slide level2"> |
|
<h2>A Launching Interface</h2> |
|
<p>Generate a device-specific configuration through <code>accelerate config</code></p> |
|
|
|
<img data-src="CLI.gif" class="r-stretch"></section> |
|
<section id="a-launching-interface-4" class="slide level2"> |
|
<h2>A Launching Interface</h2> |
|
<p>Or don’t. <code>accelerate config</code> doesn’t <em>have</em> to be done!</p> |
|
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span> |
|
<span id="cb5-2"><a href="#cb5-2"></a><span class="ex">accelerate</span> launch <span class="at">--multi_gpu</span> <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<p>A quick default configuration can be made too:</p> |
|
<div class="sourceCode" id="cb6"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1"></a><span class="ex">accelerate</span> config default</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="a-launching-interface-5" class="slide level2"> |
|
<h2>A Launching Interface</h2> |
|
<p>With the <code>notebook_launcher</code> it’s also possible to launch code directly from your Jupyter environment too!</p> |
|
<div class="sourceCode" id="cb7"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1"></a><span class="im">from</span> accelerate <span class="im">import</span> notebook_launcher</span> |
|
<span id="cb7-2"><a href="#cb7-2"></a>notebook_launcher(</span> |
|
<span id="cb7-3"><a href="#cb7-3"></a> training_loop_function, </span> |
|
<span id="cb7-4"><a href="#cb7-4"></a> args, </span> |
|
<span id="cb7-5"><a href="#cb7-5"></a> num_processes<span class="op">=</span><span class="dv">2</span></span> |
|
<span id="cb7-6"><a href="#cb7-6"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<div class="sourceCode" id="cb8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a>Launching training on <span class="dv">2</span> GPUs.</span> |
|
<span id="cb8-2"><a href="#cb8-2"></a>epoch <span class="dv">0</span>: <span class="fl">88.12</span></span> |
|
<span id="cb8-3"><a href="#cb8-3"></a>epoch <span class="dv">1</span>: <span class="fl">91.73</span></span> |
|
<span id="cb8-4"><a href="#cb8-4"></a>epoch <span class="dv">2</span>: <span class="fl">92.58</span></span> |
|
<span id="cb8-5"><a href="#cb8-5"></a>epoch <span class="dv">3</span>: <span class="fl">93.90</span></span> |
|
<span id="cb8-6"><a href="#cb8-6"></a>epoch <span class="dv">4</span>: <span class="fl">94.71</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section></section> |
|
<section> |
|
<section id="a-training-library" class="title-slide slide level1 center"> |
|
<h1>A Training Library</h1> |
|
<p>Okay, will <code>accelerate launch</code> make <code>do_the_thing.py</code> use all my GPUs magically?</p> |
|
</section> |
|
<section id="a-training-library-1" class="slide level2"> |
|
<h2>A Training Library</h2> |
|
<ul> |
|
<li>Just showed that its possible using <code>accelerate launch</code> to <em>launch</em> a python script in various distributed environments</li> |
|
<li>This does <em>not</em> mean that the script will just “use” that code and still run on the new compute efficiently.</li> |
|
<li>Training on different computes often means <em>many</em> lines of code changed for each specific compute.</li> |
|
<li>🤗 <code>accelerate</code> solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!</li> |
|
</ul> |
|
</section> |
|
<section id="a-training-library-2" class="slide level2"> |
|
<h2>A Training Library</h2> |
|
<div class="sourceCode" id="cb9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb9-2"><a href="#cb9-2"></a> optimizer.zero_grad()</span> |
|
<span id="cb9-3"><a href="#cb9-3"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb9-4"><a href="#cb9-4"></a> inputs <span class="op">=</span> inputs.to(device)</span> |
|
<span id="cb9-5"><a href="#cb9-5"></a> targets <span class="op">=</span> targets.to(device)</span> |
|
<span id="cb9-6"><a href="#cb9-6"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb9-7"><a href="#cb9-7"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb9-8"><a href="#cb9-8"></a> loss.backward()</span> |
|
<span id="cb9-9"><a href="#cb9-9"></a> optimizer.step()</span> |
|
<span id="cb9-10"><a href="#cb9-10"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="a-training-library-3" class="slide level2 smaller"> |
|
<h2>A Training Library</h2> |
|
<div class="columns"> |
|
<div class="column" style="width:43%;"> |
|
<p><br><br><br></p> |
|
<div class="sourceCode" id="cb10" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1"></a><span class="co"># For alignment purposes</span></span> |
|
<span id="cb10-2"><a href="#cb10-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb10-3"><a href="#cb10-3"></a> optimizer.zero_grad()</span> |
|
<span id="cb10-4"><a href="#cb10-4"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb10-5"><a href="#cb10-5"></a> inputs <span class="op">=</span> inputs.to(device)</span> |
|
<span id="cb10-6"><a href="#cb10-6"></a> targets <span class="op">=</span> targets.to(device)</span> |
|
<span id="cb10-7"><a href="#cb10-7"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb10-8"><a href="#cb10-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb10-9"><a href="#cb10-9"></a> loss.backward()</span> |
|
<span id="cb10-10"><a href="#cb10-10"></a> optimizer.step()</span> |
|
<span id="cb10-11"><a href="#cb10-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div><div class="column" style="width:57%;"> |
|
<div class="sourceCode" id="cb11" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span> |
|
<span id="cb11-2"><a href="#cb11-2"></a>accelerator <span class="op">=</span> Accelerator()</span> |
|
<span id="cb11-3"><a href="#cb11-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span> |
|
<span id="cb11-4"><a href="#cb11-4"></a> accelerator.prepare(</span> |
|
<span id="cb11-5"><a href="#cb11-5"></a> dataloader, model, optimizer, scheduler</span> |
|
<span id="cb11-6"><a href="#cb11-6"></a> )</span> |
|
<span id="cb11-7"><a href="#cb11-7"></a>)</span> |
|
<span id="cb11-8"><a href="#cb11-8"></a></span> |
|
<span id="cb11-9"><a href="#cb11-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb11-10"><a href="#cb11-10"></a> optimizer.zero_grad()</span> |
|
<span id="cb11-11"><a href="#cb11-11"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb11-12"><a href="#cb11-12"></a> <span class="co"># inputs = inputs.to(device)</span></span> |
|
<span id="cb11-13"><a href="#cb11-13"></a> <span class="co"># targets = targets.to(device)</span></span> |
|
<span id="cb11-14"><a href="#cb11-14"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb11-15"><a href="#cb11-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb11-16"><a href="#cb11-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span> |
|
<span id="cb11-17"><a href="#cb11-17"></a> optimizer.step()</span> |
|
<span id="cb11-18"><a href="#cb11-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div> |
|
</div> |
|
</section> |
|
<section id="a-training-library-4" class="slide level2"> |
|
<h2>A Training Library</h2> |
|
<p>What all happened in <code>Accelerator.prepare</code>?</p> |
|
<div> |
|
<ol type="1"> |
|
<li class="fragment"><code>Accelerator</code> looked at the configuration</li> |
|
<li class="fragment">The <code>dataloader</code> was converted into one that can dispatch each batch onto a seperate GPU</li> |
|
<li class="fragment">The <code>model</code> was wrapped with the appropriate DDP wrapper from either <code>torch.distributed</code> or <code>torch_xla</code></li> |
|
<li class="fragment">The <code>optimizer</code> and <code>scheduler</code> were both converted into an <code>AcceleratedOptimizer</code> and <code>AcceleratedScheduler</code> which knows how to handle any distributed scenario</li> |
|
</ol> |
|
</div> |
|
</section> |
|
<section id="a-training-library-mixed-precision" class="slide level2"> |
|
<h2>A Training Library, Mixed Precision</h2> |
|
<p>🤗 <code>accelerate</code> also supports <em>automatic mixed precision</em>.</p> |
|
<p>Through a single flag to the <code>Accelerator</code> object when calling <code>accelerator.backward()</code> the mixed precision of your choosing (such as <code>bf16</code> or <code>fp16</code>) will be applied:</p> |
|
<div class="sourceCode" id="cb12" data-code-line-numbers="2,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span> |
|
<span id="cb12-2"><a href="#cb12-2"></a>accelerator <span class="op">=</span> Accelerator(mixed_precision<span class="op">=</span><span class="st">"fp16"</span>)</span> |
|
<span id="cb12-3"><a href="#cb12-3"></a>...</span> |
|
<span id="cb12-4"><a href="#cb12-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb12-5"><a href="#cb12-5"></a> optimizer.zero_grad()</span> |
|
<span id="cb12-6"><a href="#cb12-6"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb12-7"><a href="#cb12-7"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb12-8"><a href="#cb12-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb12-9"><a href="#cb12-9"></a> accelerator.backward(loss)</span> |
|
<span id="cb12-10"><a href="#cb12-10"></a> optimizer.step()</span> |
|
<span id="cb12-11"><a href="#cb12-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="a-training-library-gradient-accumulation" class="slide level2"> |
|
<h2>A Training Library, Gradient Accumulation</h2> |
|
<p>Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.</p> |
|
<p>🤗 <code>accelerate</code> can just easily handle this for you:</p> |
|
<div class="sourceCode" id="cb13" data-code-line-numbers="2,5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span> |
|
<span id="cb13-2"><a href="#cb13-2"></a>accelerator <span class="op">=</span> Accelerator(gradient_accumulation_steps<span class="op">=</span><span class="dv">4</span>)</span> |
|
<span id="cb13-3"><a href="#cb13-3"></a>...</span> |
|
<span id="cb13-4"><a href="#cb13-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb13-5"><a href="#cb13-5"></a> <span class="cf">with</span> accelerator.accumulate(model):</span> |
|
<span id="cb13-6"><a href="#cb13-6"></a> optimizer.zero_grad()</span> |
|
<span id="cb13-7"><a href="#cb13-7"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb13-8"><a href="#cb13-8"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb13-9"><a href="#cb13-9"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb13-10"><a href="#cb13-10"></a> accelerator.backward(loss)</span> |
|
<span id="cb13-11"><a href="#cb13-11"></a> optimizer.step()</span> |
|
<span id="cb13-12"><a href="#cb13-12"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="a-training-library-gradient-accumulation-1" class="slide level2"> |
|
<h2>A Training Library, Gradient Accumulation</h2> |
|
<div class="sourceCode" id="cb14" data-code-line-numbers="5-7,10,11,12,15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1"></a>ddp_model, dataloader <span class="op">=</span> accelerator.prepare(model, dataloader)</span> |
|
<span id="cb14-2"><a href="#cb14-2"></a></span> |
|
<span id="cb14-3"><a href="#cb14-3"></a><span class="cf">for</span> index, batch <span class="kw">in</span> <span class="bu">enumerate</span>(dataloader):</span> |
|
<span id="cb14-4"><a href="#cb14-4"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb14-5"><a href="#cb14-5"></a> <span class="cf">if</span> index <span class="op">!=</span> (<span class="bu">len</span>(dataloader)<span class="op">-</span><span class="dv">1</span>) <span class="kw">or</span> (index <span class="op">%</span> <span class="dv">4</span>) <span class="op">!=</span> <span class="dv">0</span>:</span> |
|
<span id="cb14-6"><a href="#cb14-6"></a> <span class="co"># Gradients don't sync</span></span> |
|
<span id="cb14-7"><a href="#cb14-7"></a> <span class="cf">with</span> accelerator.no_sync(model):</span> |
|
<span id="cb14-8"><a href="#cb14-8"></a> outputs <span class="op">=</span> ddp_model(inputs)</span> |
|
<span id="cb14-9"><a href="#cb14-9"></a> loss <span class="op">=</span> loss_func(outputs, targets)</span> |
|
<span id="cb14-10"><a href="#cb14-10"></a> accelerator.backward(loss)</span> |
|
<span id="cb14-11"><a href="#cb14-11"></a> <span class="cf">else</span>:</span> |
|
<span id="cb14-12"><a href="#cb14-12"></a> <span class="co"># Gradients finally sync</span></span> |
|
<span id="cb14-13"><a href="#cb14-13"></a> outputs <span class="op">=</span> ddp_model(inputs)</span> |
|
<span id="cb14-14"><a href="#cb14-14"></a> loss <span class="op">=</span> loss_func(outputs)</span> |
|
<span id="cb14-15"><a href="#cb14-15"></a> accelerator.backward(loss)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section></section> |
|
<section> |
|
<section id="big-model-inference" class="title-slide slide level1 center"> |
|
<h1>Big Model Inference</h1> |
|
<p>Stable Diffusion taking the world by storm</p> |
|
</section> |
|
<section id="bigger-models-higher-compute" class="slide level2"> |
|
<h2>Bigger Models == Higher Compute</h2> |
|
<p>As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.</p> |
|
<p>Born out of this effort by Sylvain Gugger:</p> |
|
<p>🤗 Accelerate: Big Model Inference.</p> |
|
</section> |
|
<section id="the-basic-premise" class="slide level2"> |
|
<h2>The Basic Premise</h2> |
|
<div> |
|
<ul> |
|
<li class="fragment"><p>In PyTorch, there exists the <code>meta</code> device.</p></li> |
|
<li class="fragment"><p>Super small footprint to load in huge models quickly by not loading in their weights immediatly.</p></li> |
|
<li class="fragment"><p>As an input gets passed through each layer, we can load and unload <em>parts</em> of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.</p></li> |
|
<li class="fragment"><p>The end result? Stable Diffusion v1 can be ran on < 800mb of vRAM</p></li> |
|
</ul> |
|
</div> |
|
</section> |
|
<section id="the-code" class="slide level2"> |
|
<h2>The Code</h2> |
|
<p>Generally you start with something like so:</p> |
|
<div class="sourceCode" id="cb15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1"></a><span class="im">import</span> torch</span> |
|
<span id="cb15-2"><a href="#cb15-2"></a></span> |
|
<span id="cb15-3"><a href="#cb15-3"></a>my_model <span class="op">=</span> ModelClass(...)</span> |
|
<span id="cb15-4"><a href="#cb15-4"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span> |
|
<span id="cb15-5"><a href="#cb15-5"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<p>But this has issues:</p> |
|
<ol type="1"> |
|
<li>The full version of the model is loaded at <code>3</code></li> |
|
<li>Another version of the model is loaded into memory at <code>4</code></li> |
|
</ol> |
|
<p>If a 6 <em>billion</em> parameter model is being loaded, each model class has a dictionary of 24GB so 48GB of vRAM is needed</p> |
|
</section> |
|
<section id="empty-model-weights" class="slide level2"> |
|
<h2>Empty Model Weights</h2> |
|
<p>We can fix step 1 by loading in an empty model skeleton at first:</p> |
|
<div class="sourceCode" id="cb16" data-code-line-numbers="2,4-5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights</span> |
|
<span id="cb16-2"><a href="#cb16-2"></a></span> |
|
<span id="cb16-3"><a href="#cb16-3"></a><span class="cf">with</span> init_empty_weights():</span> |
|
<span id="cb16-4"><a href="#cb16-4"></a> my_model <span class="op">=</span> ModelClass(...)</span> |
|
<span id="cb16-5"><a href="#cb16-5"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span> |
|
<span id="cb16-6"><a href="#cb16-6"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<div class="callout callout-important callout-captioned callout-style-default"> |
|
<div class="callout-body"> |
|
<div class="callout-caption"> |
|
<div class="callout-icon-container"> |
|
<i class="callout-icon"></i> |
|
</div> |
|
<p><strong>This code will not run</strong></p> |
|
</div> |
|
<div class="callout-content"> |
|
<p>It is likely that just calling <code>my_model(x)</code> will fail as not all tensor operations are supported on the <code>meta</code> device.</p> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
<section id="sharded-checkpoints---the-concept" class="slide level2"> |
|
<h2>Sharded Checkpoints - The Concept</h2> |
|
<p>The next step is to have “Sharded Checkpoints” saved for your model.</p> |
|
<p>Basically smaller chunks of your model weights stored that can be brought in at any particular time.</p> |
|
<p>This reduces the amount of memory step 2 takes in since we can just load in a “chunk” of the model at a time, then swap it out for a new chunk through PyTorch hooks</p> |
|
</section> |
|
<section id="sharded-checkpoints---the-code" class="slide level2"> |
|
<h2>Sharded Checkpoints - The Code</h2> |
|
<div class="sourceCode" id="cb17" data-code-line-numbers="1,6-8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span> |
|
<span id="cb17-2"><a href="#cb17-2"></a></span> |
|
<span id="cb17-3"><a href="#cb17-3"></a><span class="cf">with</span> init_empty_weights():</span> |
|
<span id="cb17-4"><a href="#cb17-4"></a> my_model <span class="op">=</span> ModelClass(...)</span> |
|
<span id="cb17-5"><a href="#cb17-5"></a></span> |
|
<span id="cb17-6"><a href="#cb17-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span> |
|
<span id="cb17-7"><a href="#cb17-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span> |
|
<span id="cb17-8"><a href="#cb17-8"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
<p><code>device_map="auto"</code> will tell 🤗 Accelerate that it should determine where to put each layer of the model:</p> |
|
<ol type="1"> |
|
<li>Maximum space on the GPU(s)</li> |
|
<li>Maximum space on the CPU(s)</li> |
|
<li>Utilize disk space through memory-mapped tensors</li> |
|
</ol> |
|
</section> |
|
<section id="big-model-inference-put-together" class="slide level2"> |
|
<h2>Big Model Inference Put Together</h2> |
|
<div class="sourceCode" id="cb18"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span> |
|
<span id="cb18-2"><a href="#cb18-2"></a></span> |
|
<span id="cb18-3"><a href="#cb18-3"></a><span class="cf">with</span> init_empty_weights():</span> |
|
<span id="cb18-4"><a href="#cb18-4"></a> my_model <span class="op">=</span> ModelClass(...)</span> |
|
<span id="cb18-5"><a href="#cb18-5"></a></span> |
|
<span id="cb18-6"><a href="#cb18-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span> |
|
<span id="cb18-7"><a href="#cb18-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span> |
|
<span id="cb18-8"><a href="#cb18-8"></a>)</span> |
|
<span id="cb18-9"><a href="#cb18-9"></a>my_model.<span class="bu">eval</span>()</span> |
|
<span id="cb18-10"><a href="#cb18-10"></a></span> |
|
<span id="cb18-11"><a href="#cb18-11"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb18-12"><a href="#cb18-12"></a> output <span class="op">=</span> my_model(batch)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="demo" class="slide level2"> |
|
<h2>Demo!</h2> |
|
</section></section> |
|
<section> |
|
<section id="thanks-for-listening" class="title-slide slide level1 center"> |
|
<h1>Thanks for Listening!</h1> |
|
|
|
</section> |
|
<section id="some-handy-resources" class="slide level2"> |
|
<h2>Some Handy Resources</h2> |
|
<ul> |
|
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li> |
|
</ul> |
|
<div class="footer footer-default"> |
|
|
|
</div> |
|
</section></section> |
|
|
|
</div> |
|
</div> |
|
|
|
<script>window.backupDefine = window.define; window.define = undefined;</script> |
|
<script src="Accelerate_files/libs/revealjs/dist/reveal.js"></script> |
|
|
|
<script src="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/quarto-support/support.js"></script> |
|
|
|
|
|
<script src="Accelerate_files/libs/revealjs/plugin/notes/notes.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/search/search.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/zoom/zoom.js"></script> |
|
<script src="Accelerate_files/libs/revealjs/plugin/math/math.js"></script> |
|
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script> |
|
|
|
<script> |
|
|
|
|
|
|
|
Reveal.initialize({ |
|
'controlsAuto': true, |
|
'previewLinksAuto': false, |
|
'smaller': false, |
|
'pdfSeparateFragments': false, |
|
'autoAnimateEasing': "ease", |
|
'autoAnimateDuration': 1, |
|
'autoAnimateUnmatched': true, |
|
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true}, |
|
'smaller': false, |
|
|
|
|
|
controls: false, |
|
|
|
|
|
|
|
controlsTutorial: false, |
|
|
|
|
|
controlsLayout: 'edges', |
|
|
|
|
|
|
|
controlsBackArrows: 'faded', |
|
|
|
|
|
progress: true, |
|
|
|
|
|
slideNumber: false, |
|
|
|
|
|
showSlideNumber: 'all', |
|
|
|
|
|
|
|
hash: true, |
|
|
|
|
|
hashOneBasedIndex: false, |
|
|
|
|
|
respondToHashChanges: true, |
|
|
|
|
|
history: true, |
|
|
|
|
|
keyboard: true, |
|
|
|
|
|
overview: true, |
|
|
|
|
|
|
|
disableLayout: false, |
|
|
|
|
|
center: false, |
|
|
|
|
|
touch: true, |
|
|
|
|
|
loop: false, |
|
|
|
|
|
rtl: false, |
|
|
|
|
|
navigationMode: 'linear', |
|
|
|
|
|
shuffle: false, |
|
|
|
|
|
fragments: true, |
|
|
|
|
|
|
|
fragmentInURL: false, |
|
|
|
|
|
|
|
embedded: false, |
|
|
|
|
|
|
|
help: true, |
|
|
|
|
|
pause: true, |
|
|
|
|
|
showNotes: false, |
|
|
|
|
|
autoPlayMedia: null, |
|
|
|
|
|
preloadIframes: null, |
|
|
|
|
|
|
|
|
|
autoSlide: 0, |
|
|
|
|
|
autoSlideStoppable: true, |
|
|
|
|
|
autoSlideMethod: null, |
|
|
|
|
|
|
|
|
|
defaultTiming: null, |
|
|
|
|
|
mouseWheel: false, |
|
|
|
|
|
display: 'block', |
|
|
|
|
|
hideInactiveCursor: true, |
|
|
|
|
|
hideCursorTime: 5000, |
|
|
|
|
|
previewLinks: false, |
|
|
|
|
|
transition: 'none', |
|
|
|
|
|
transitionSpeed: 'default', |
|
|
|
|
|
|
|
backgroundTransition: 'none', |
|
|
|
|
|
viewDistance: 3, |
|
|
|
|
|
|
|
|
|
mobileViewDistance: 2, |
|
|
|
|
|
|
|
|
|
width: 1050, |
|
|
|
height: 700, |
|
|
|
|
|
margin: 0.1, |
|
|
|
math: { |
|
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js', |
|
config: 'TeX-AMS_HTML-full', |
|
tex2jax: { |
|
inlineMath: [['\\(','\\)']], |
|
displayMath: [['\\[','\\]']], |
|
balanceBraces: true, |
|
processEscapes: false, |
|
processRefs: true, |
|
processEnvironments: true, |
|
preview: 'TeX', |
|
skipTags: ['script','noscript','style','textarea','pre','code'], |
|
ignoreClass: 'tex2jax_ignore', |
|
processClass: 'tex2jax_process' |
|
}, |
|
}, |
|
|
|
|
|
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport, |
|
|
|
RevealMath, |
|
RevealNotes, |
|
RevealSearch, |
|
RevealZoom |
|
] |
|
}); |
|
</script> |
|
<script id="quarto-html-after-body" type="application/javascript"> |
|
window.document.addEventListener("DOMContentLoaded", function (event) { |
|
const toggleBodyColorMode = (bsSheetEl) => { |
|
const mode = bsSheetEl.getAttribute("data-mode"); |
|
const bodyEl = window.document.querySelector("body"); |
|
if (mode === "dark") { |
|
bodyEl.classList.add("quarto-dark"); |
|
bodyEl.classList.remove("quarto-light"); |
|
} else { |
|
bodyEl.classList.add("quarto-light"); |
|
bodyEl.classList.remove("quarto-dark"); |
|
} |
|
} |
|
const toggleBodyColorPrimary = () => { |
|
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap"); |
|
if (bsSheetEl) { |
|
toggleBodyColorMode(bsSheetEl); |
|
} |
|
} |
|
toggleBodyColorPrimary(); |
|
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby") |
|
tabsets.forEach(function(tabset) { |
|
const tabby = new Tabby('#' + tabset.id); |
|
}); |
|
const clipboard = new window.ClipboardJS('.code-copy-button', { |
|
target: function(trigger) { |
|
return trigger.previousElementSibling; |
|
} |
|
}); |
|
clipboard.on('success', function(e) { |
|
|
|
const button = e.trigger; |
|
|
|
button.blur(); |
|
|
|
button.classList.add('code-copy-button-checked'); |
|
var currentTitle = button.getAttribute("title"); |
|
button.setAttribute("title", "Copied!"); |
|
let tooltip; |
|
if (window.bootstrap) { |
|
button.setAttribute("data-bs-toggle", "tooltip"); |
|
button.setAttribute("data-bs-placement", "left"); |
|
button.setAttribute("data-bs-title", "Copied!"); |
|
tooltip = new bootstrap.Tooltip(button, |
|
{ trigger: "manual", |
|
customClass: "code-copy-button-tooltip", |
|
offset: [0, -8]}); |
|
tooltip.show(); |
|
} |
|
setTimeout(function() { |
|
if (tooltip) { |
|
tooltip.hide(); |
|
button.removeAttribute("data-bs-title"); |
|
button.removeAttribute("data-bs-toggle"); |
|
button.removeAttribute("data-bs-placement"); |
|
} |
|
button.setAttribute("title", currentTitle); |
|
button.classList.remove('code-copy-button-checked'); |
|
}, 1000); |
|
|
|
e.clearSelection(); |
|
}); |
|
function tippyHover(el, contentFn) { |
|
const config = { |
|
allowHTML: true, |
|
content: contentFn, |
|
maxWidth: 500, |
|
delay: 100, |
|
arrow: false, |
|
appendTo: function(el) { |
|
return el.closest('section.slide') || el.parentElement; |
|
}, |
|
interactive: true, |
|
interactiveBorder: 10, |
|
theme: 'quarto-reveal', |
|
placement: 'bottom-start' |
|
}; |
|
config['offset'] = [0,0]; |
|
config['maxWidth'] = 700; |
|
window.tippy(el, config); |
|
} |
|
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]'); |
|
for (var i=0; i<noterefs.length; i++) { |
|
const ref = noterefs[i]; |
|
tippyHover(ref, function() { |
|
|
|
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href'); |
|
try { href = new URL(href).hash; } catch {} |
|
const id = href.replace(/^#\/?/, ""); |
|
const note = window.document.getElementById(id); |
|
return note.innerHTML; |
|
}); |
|
} |
|
const findCites = (el) => { |
|
const parentEl = el.parentElement; |
|
if (parentEl) { |
|
const cites = parentEl.dataset.cites; |
|
if (cites) { |
|
return { |
|
el, |
|
cites: cites.split(' ') |
|
}; |
|
} else { |
|
return findCites(el.parentElement) |
|
} |
|
} else { |
|
return undefined; |
|
} |
|
}; |
|
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]'); |
|
for (var i=0; i<bibliorefs.length; i++) { |
|
const ref = bibliorefs[i]; |
|
const citeInfo = findCites(ref); |
|
if (citeInfo) { |
|
tippyHover(citeInfo.el, function() { |
|
var popup = window.document.createElement('div'); |
|
citeInfo.cites.forEach(function(cite) { |
|
var citeDiv = window.document.createElement('div'); |
|
citeDiv.classList.add('hanging-indent'); |
|
citeDiv.classList.add('csl-entry'); |
|
var biblioDiv = window.document.getElementById('ref-' + cite); |
|
if (biblioDiv) { |
|
citeDiv.innerHTML = biblioDiv.innerHTML; |
|
} |
|
popup.appendChild(citeDiv); |
|
}); |
|
return popup.innerHTML; |
|
}); |
|
} |
|
} |
|
}); |
|
</script> |
|
|
|
|
|
</body></html> |