Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the pre-trained model
|
6 |
+
model = joblib.load("house_price_model.pkl")
|
7 |
+
|
8 |
+
# Define a prediction function
|
9 |
+
def predict_price(area):
|
10 |
+
# Convert input to the correct format
|
11 |
+
area_array = np.array([[float(area)]]) # Reshape to 2D array
|
12 |
+
predicted_price = model.predict(area_array)
|
13 |
+
return f"The predicted price for {area} sq ft house is ${predicted_price[0]:,.2f}"
|
14 |
+
|
15 |
+
# Create a Gradio interface
|
16 |
+
interface = gr.Interface(
|
17 |
+
fn=predict_price, # Function to call for predictions
|
18 |
+
inputs=gr.Number(label="Enter Area (sq ft)"), # Input field
|
19 |
+
outputs=gr.Textbox(label="Predicted Price"), # Output display
|
20 |
+
title="House Price Prediction",
|
21 |
+
description="Enter the area of a house (in square feet), and this application will predict its price."
|
22 |
+
)
|
23 |
+
|
24 |
+
# Launch the app
|
25 |
+
interface.launch()
|