import joblib import gradio as gr import numpy as np # Load the pre-trained model model = joblib.load("house_price_model.pkl") # Define a prediction function def predict_price(area): # Convert input to the correct format area_array = np.array([[float(area)]]) # Reshape to 2D array predicted_price = model.predict(area_array) return f"The predicted price for {area} sq ft house is ${predicted_price[0]:,.2f}" # Create a Gradio interface interface = gr.Interface( fn=predict_price, # Function to call for predictions inputs=gr.Number(label="Enter Area (sq ft)"), # Input field outputs=gr.Textbox(label="Predicted Price"), # Output display title="House Price Prediction", description="Enter the area of a house (in square feet), and this application will predict its price." ) # Launch the app interface.launch()