Spaces:
Build error
Build error
# Install required libraries | |
!pip install gradio transformers torchaudio | |
import gradio as gr | |
import torch | |
from transformers import pipeline | |
import torchaudio | |
from torchaudio.transforms import Resample | |
from pydub import AudioSegment | |
from io import BytesIO | |
# Load Whisper model for speech-to-text | |
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-small") | |
# Mock Groq LLM interaction (replace with real Groq LLM API integration) | |
def groq_llm_interaction(prompt): | |
# Replace this with actual Groq LLM API calls | |
return f"Echoing your input: {prompt}" | |
# Text-to-speech conversion | |
def text_to_speech(text, output_path="output.wav"): | |
# Use a simple TTS pipeline (can replace with more advanced models) | |
tts = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech") | |
audio = tts(text, return_tensors=True)["waveform"] | |
torchaudio.save(output_path, audio.squeeze(), 22050) | |
return output_path | |
# Convert raw audio to desired format | |
def process_audio(audio): | |
audio = AudioSegment.from_file(audio) | |
buf = BytesIO() | |
audio.export(buf, format="wav") | |
buf.seek(0) | |
return buf | |
# Chatbot function | |
def voice_to_voice_chat(audio_file): | |
# Process the audio input | |
processed_audio = process_audio(audio_file) | |
# Step 1: Speech-to-text (Whisper) | |
transcript = whisper_model(processed_audio)["text"] | |
# Step 2: LLM interaction | |
response_text = groq_llm_interaction(transcript) | |
# Step 3: Text-to-speech (TTS) | |
response_audio_path = text_to_speech(response_text) | |
gr.Audio(type="filepath") | |
gr.Audio(type="numpy") | |
interface = gr.Interface( | |
fn=voice_to_voice_chat, | |
inputs=gr.Audio(type="filepath"), # Corrected type | |
outputs=[ | |
"text", # Transcription and response text | |
gr.Audio(type="filepath"), # Generated audio response as a file path | |
], | |
live=True # Ensure real-time interaction | |
) | |
# Launch Gradio app | |
interface.launch() | |