File size: 10,497 Bytes
e100e3d
 
045e420
 
 
 
 
 
 
1b63cf9
 
045e420
6767b76
045e420
e100e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
045e420
3355280
045e420
e100e3d
 
 
 
bee95b7
3106667
e100e3d
bee95b7
 
 
e100e3d
 
bee95b7
 
 
e100e3d
 
bee95b7
 
 
e100e3d
 
 
 
 
 
 
6e83649
e100e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
6e83649
e100e3d
 
 
 
 
 
 
 
3106667
 
 
 
 
 
bee95b7
c9fdc92
e100e3d
 
 
64572b6
045e420
e100e3d
 
 
 
 
 
1b63cf9
6e83649
045e420
 
e100e3d
045e420
016cd62
e100e3d
 
045e420
 
 
 
 
 
e100e3d
045e420
e100e3d
c9fdc92
e100e3d
 
6767b76
 
 
 
 
e100e3d
 
6767b76
 
e100e3d
 
6767b76
 
 
 
 
 
 
 
 
e100e3d
6767b76
e100e3d
6767b76
045e420
e100e3d
045e420
 
 
6013191
 
 
 
 
045e420
 
 
 
 
 
 
 
 
c9fdc92
045e420
e100e3d
 
 
 
66bdaad
e100e3d
 
045e420
 
1b63cf9
045e420
 
 
 
 
 
e100e3d
 
045e420
bfe42fe
1b63cf9
c9fdc92
1b63cf9
c9fdc92
bfe42fe
c9fdc92
 
e100e3d
 
 
 
 
 
016cd62
e100e3d
 
 
 
 
 
 
 
 
045e420
 
 
 
 
 
e100e3d
045e420
 
 
 
 
 
e100e3d
 
045e420
 
 
 
 
e100e3d
 
045e420
 
 
 
 
 
e100e3d
045e420
e100e3d
045e420
e100e3d
c9fdc92
 
 
 
 
 
016cd62
c9fdc92
045e420
 
 
 
 
68fc7b5
e100e3d
045e420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef8fa5
045e420
 
 
e100e3d
045e420
e100e3d
 
045e420
 
 
 
 
 
 
 
 
c9fdc92
045e420
8fca030
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python

import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
from typing import Tuple
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

DESCRIPTION = """ """

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU, This may not work on CPU.</p>"

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

style_list = [
    

    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt} . ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 × 1440",
        "prompt": "hyper-realistic 4K image of {prompt} . ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HDR",
        "prompt": "HDR photo of {prompt} . high dynamic range, vivid colors, sharp contrast, realistic, detailed, high resolution, professional",
        "negative_prompt": "dull, low contrast, blurry, unrealistic, cartoonish, ugly, deformed",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photo",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },

    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "3840 x 2160"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU(enable_queue=True)
def stab(
    prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_inference_steps: int = 40,
    num_images_per_prompt: int = 2,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
    decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)

    prior.enable_model_cpu_offload()
    prior_output = prior(
        prompt=prompt,
        height=height,
        width=width,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        num_inference_steps=num_inference_steps
    )

    decoder.enable_model_cpu_offload()
    images = decoder(
        image_embeddings=prior_output.image_embeddings.to(torch.float16),
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=0.0,
        output_type="pil",
        num_inference_steps=10
    ).images

    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1. 5), (best quality:1. 5)",
    "(Pirate ship sailing into a bioluminescence sea with a galaxy in the sky), epic, 4k, ultra,  the space scene with planets and stars, in the style of ethereal escapism, richly colored skies, vibrant worlds --ar 8:5 ",
    "Thin burger, realistic photo (without tomato or any other ingredient), smoky flavor, 4K resolution highlights every texture, providing an incredible and appetizing visual experience",
    "A galaxy with blue water, a red star and many planets in one view, in the style of digital fantasy nubelas and cosmos, light black and violet, realistic nubelas paintings, james paick, steve henderson, ue5, cosmic horror --ar 8:5",
    "A dark night sky with thick, dense clouds and stars in the background. The main focus is on one of these large cloud formations that has been stylized to resemble an ancient dragon. There's no moon or other celestial bodies visible in the sky. This scene conveys mystery and magic, with the dark blue glow from distant galaxies adding depth and contrast to the night landscape. --ar 8:5 --v 5.2 --style raw"
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=False,
    )

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Result", columns=1, preview=True)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
            visible=True,
        )
        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=60,
                step=1,
                value=40,
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images",
                minimum=1,
                maximum=5,
                step=1,
                value=2,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )
    with gr.Row(visible=True):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Styler",
        )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=stab,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=stab,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            num_inference_steps,
            num_images_per_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False, debug=False, share=True)