DALLE-4K / app.py
prithivMLmods's picture
Update app.py
6013191 verified
raw
history blame
10.9 kB
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
from typing import Tuple
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
DESCRIPTION = """ """
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU, This may not work on CPU.</p>"
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt} . ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 × 1440",
"prompt": "hyper-realistic 4K image of {prompt} . ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HDR",
"prompt": "HDR photo of {prompt} . high dynamic range, vivid colors, sharp contrast, realistic, detailed, high resolution, professional",
"negative_prompt": "dull, low contrast, blurry, unrealistic, cartoonish, ugly, deformed",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photo",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "3840 x 2160"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
@spaces.GPU(enable_queue=True)
def stab(
prompt: str,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
num_inference_steps: int = 40,
num_images_per_prompt: int = 2,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = ""
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
prior.enable_model_cpu_offload()
prior_output = prior(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_steps
)
decoder.enable_model_cpu_offload()
images = decoder(
image_embeddings=prior_output.image_embeddings.to(torch.float16),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1. 5), (best quality:1. 5)",
"(Pirate ship sailing into a bioluminescence sea with a galaxy in the sky), epic, 4k, ultra, the space scene with planets and stars, in the style of ethereal escapism, richly colored skies, vibrant worlds --ar 8:5 ",
"Thin burger, realistic photo (without tomato or any other ingredient), smoky flavor, 4K resolution highlights every texture, providing an incredible and appetizing visual experience",
"A galaxy with blue water, a red star and many planets in one view, in the style of digital fantasy nubelas and cosmos, light black and violet, realistic nubelas paintings, james paick, steve henderson, ue5, cosmic horror --ar 8:5",
"Asteroid fields and galaxies, creating an epic scifi scene. The background features colorful nebulae and stars. , red blue gradient, futuristic, with many small rocks floating in the foreground, creating depth of field. An alien planet can be seen in the distance, emitting bright light rays. A huge black hole lies at its center, radiating intense heat and energy, illuminates all around it. High resolution. --v 6. 0 ",
"A dark night sky with thick, dense clouds and stars in the background. The main focus is on one of these large cloud formations that has been stylized to resemble an ancient dragon. There's no moon or other celestial bodies visible in the sky. This scene conveys mystery and magic, with the dark blue glow from distant galaxies adding depth and contrast to the night landscape. --ar 8:5 --v 5.2 --style raw"
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Gallery(label="Result", columns=1, preview=True)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=60,
step=1,
value=40,
)
with gr.Row():
num_images_per_prompt = gr.Slider(
label="Images",
minimum=1,
maximum=5,
step=1,
value=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Styler",
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=stab,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=stab,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
num_inference_steps,
num_images_per_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False, share=True)