GT_VTR3_1 / app.py
Ubuntu
fixed issuse with model with dress
6e6426e
from flask import Flask, request, jsonify,send_file, Response
from flask_cors import CORS
import logging
import gc
import os
from threading import Thread
from flask_sse import sse
from io import BytesIO
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
import numpy as np
from run.utils_ootd import get_mask_location
from run.cloths_db import cloths_map, modeL_db
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_dc import OOTDiffusionDC
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
from queue import Queue
#run python garbage collector and nvidia cuda clear memory
gc.collect()
torch.cuda.empty_cache()
# Setup Flask server
app = Flask(__name__)
CORS(app, origins="*") # Enable CORS for the entire app
app.config["REDIS_URL"] = "redis://localhost:6379"
app.register_blueprint(sse, url_prefix='/stream')
logger = logging.getLogger()
openpose_model = OpenPose(0)
parsing_model_dc = Parsing(0)
ootd_model_dc = OOTDiffusionDC(0)
example_path = os.path.join(os.path.dirname(__file__), 'examples')
garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment')
openpose_model.preprocessor.body_estimation.model.to('cuda')
ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# Ensure this directory exists
UPLOAD_FOLDER = 'temp_images'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
# progress_queue = Queue()
# def progress_callback(step, total_steps):
# if total_steps is not None and total_steps > 0:
# progress = int((step + 1) / total_steps * 100)
# progress_queue.put(progress)
# else:
# progress_queue.put(step + 1)
def progress_callback(step, total_steps):
if total_steps is not None and total_steps > 0:
progress = int((step + 1) / total_steps * 100)
sse.publish({"progress": progress}, type='progress')
else:
sse.publish({"step": step + 1}, type='progress')
def process_dc(vton_img, garm_img, category):
model_type = 'dc'
if category == 'Upper-body':
category = 0
elif category == 'Lower-body':
category = 1
else:
category = 2
with torch.no_grad():
# openpose_model.preprocessor.body_estimation.model.to('cuda')
# ootd_model_dc.pipe.to('cuda')
# ootd_model_dc.image_encoder.to('cuda')
# ootd_model_dc.text_encoder.to('cuda')
garm_img = Image.open(garm_img).resize((768, 1024))
vton_img = Image.open(vton_img).resize((768, 1024))
keypoints = openpose_model(vton_img.resize((384, 512)))
print(len(keypoints["pose_keypoints_2d"]))
print(keypoints["pose_keypoints_2d"])
left_point = keypoints["pose_keypoints_2d"][2]
right_point = keypoints["pose_keypoints_2d"][5]
neck_point = keypoints["pose_keypoints_2d"][1]
hip_point = keypoints["pose_keypoints_2d"][8]
print(f'left shoulder - {left_point}')
print(f'right shoulder - {right_point}')
# #find disctance using Euclidian distance
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2
# # Assuming an average human height
average_height_cm = 172.72 *1.5
# Conversion factor from pixels to cm
conversion_factor = average_height_cm / height_pixels
# Convert shoulder width to real-world units
shoulder_width_cm = shoulder_width_pixels * conversion_factor
print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
print(f'Estimated height (in pixels): {height_pixels}')
print(f'Conversion factor (pixels to cm): {conversion_factor}')
print(f'Shoulder width (in cm): {shoulder_width_cm}')
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
model_parse,_ = parsing_model_dc(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
# Save the resized masks
# mask.save("mask_resized.png")
# mask_gray.save("mask_gray_resized.png")
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
# masked_vton_img.save("masked_vton_img.png")
print(f'category is {category}')
# images = ootd_model_dc(
# model_type=model_type,
# category=category_dict[category],
# image_garm=garm_img,
# image_vton=masked_vton_img,
# mask=mask,
# image_ori=vton_img,
# num_samples=3,
# num_steps=20,
# image_scale= 2.0,
# seed=-1,
# )
images = ootd_model_dc(
model_type=model_type,
category=category_dict[category],
image_garm=garm_img,
image_vton=masked_vton_img,
mask=mask,
image_ori=vton_img,
num_samples=2,
num_steps=10,
image_scale=2.0,
seed=42,
progress_callback=progress_callback,
progress_interval=1, # Update progress every step
)
return images
@app.route('/')
def root():
try:
response_data = {"message": "This is VTR API v1.0"}
return jsonify(response_data)
except Exception as e:
logger.error(f"Root endpoint error: {str(e)}")
response_data = {"message": "Internal server Error"}
return jsonify(response_data), 500
@app.route('/stream')
def stream():
return Response(sse.stream(), content_type='text/event-stream')
#write Flask api name "generate" with POST method that will input 2 images and return 1 image
@app.route('/generate', methods=['POST'])
def generate():
"""
A Flask route that handles a POST request to the '/generate' endpoint.
It expects two files, 'garm_img' and 'vton_img', to be included in the request.
The function calls the 'process_dc' function with the provided files and the
category 'Upper-body'. It then sends the processed image as a file with the
mimetype 'image/png' and returns it to the client. If any exception occurs,
the function logs the error and returns a JSON response with a status code of
500.
Parameters:
None
Returns:
A Flask response object with the processed image as a file.
Raises:
None
"""
# if category == 'Upper-body':
# category = 0
# elif category == 'Lower-body':
# category = 1
# else:
# category = 2
try:
cloths_type = ["Upper-body", "Lower-body", "Dress"]
garm_img = request.files['garm_img']
vton_img = request.files['vton_img']
cat = request.form['category']
print(f'category is {cat}')
category =cloths_type[int(cat)] # Default to Upper-body if not specified
# Save the uploaded files
garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
vton_path = os.path.join(UPLOAD_FOLDER, 'vton_input.png')
garm_img.save(garm_path)
vton_img.save(vton_path)
# Convert file objects to bytes IO objects
# garm_img = BytesIO(garm_img.read())
# vton_img = BytesIO(vton_img.read())
output_images = process_dc(garm_img=garm_img,
vton_img=vton_img,
category=category)
if not output_images:
return Response("No output image generated", status=500)
output_image = output_images[0] # Get the first image
# Convert PIL Image to bytes
img_byte_arr = BytesIO()
output_image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Send the final "complete" event via SSE
sse.publish({"message": "Processing complete"}, type='complete')
return Response(img_byte_arr, mimetype='image/png')
except Exception as e:
print(f"Error: {str(e)}") # Log the error
return Response(str(e), status=500)
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=5009)
# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &