Spaces:
Runtime error
Runtime error
File size: 5,036 Bytes
5a76ad4 ed12cc6 5a76ad4 ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 5a76ad4 ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 5a76ad4 ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 405b0bd ed12cc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
"""Interface for labeling concepts in images.
"""
from typing import Optional
import random
import gradio as gr
from src import global_variables
from src.constants import CONCEPTS, ASSETS_FOLDER, DATASET_NAME
def get_next_image(
split: str,
concepts: list,
filtered_indices: dict,
selected_concepts: list,
profile: gr.OAuthProfile
):
username = profile.username
if concepts != selected_concepts:
for key, values in global_variables.all_metadata.items():
filtered_indices[key] = [i for i in range(len(values)) if all([values[i]["concepts"].get(c, False) for c in concepts])]
selected_concepts = concepts
try:
sample_idx = random.choice(filtered_indices[split])
sample = global_variables.all_metadata[split][sample_idx]
image_path = f"{ASSETS_FOLDER}/{DATASET_NAME}/data/{split}/{sample['file_name']}"
try:
username_votes = sample["votes"][username]
voted_concepts = [c for c in CONCEPTS if username_votes.get(c, False)]
except KeyError:
voted_concepts = []
return (
image_path,
voted_concepts,
f"{split}:{sample_idx}",
sample["class"],
sample["concepts"],
filtered_indices,
selected_concepts,
)
except IndexError:
gr.Warning("No image found for the selected filter.")
return None, None, None, None, None, filtered_indices, selected_concepts
def submit_label(
voted_concepts: list,
current_image: Optional[str],
split,
concepts,
filtered_indices,
selected_concepts,
profile: gr.OAuthProfile
):
username = profile.username
if current_image is None:
gr.Warning("No image selected.")
return None, None, None, None, None, filtered_indices, selected_concepts
current_split, idx = current_image.split(":")
idx = int(idx)
global_variables.get_metadata(current_split)
if "votes" not in global_variables.all_metadata[current_split][idx]:
global_variables.all_metadata[current_split][idx]["votes"] = {}
global_variables.all_metadata[current_split][idx]["votes"][username] = {c: c in voted_concepts for c in CONCEPTS}
vote_sum = {c: 0 for c in CONCEPTS}
concepts = {}
for c in CONCEPTS:
for vote in global_variables.all_metadata[current_split][idx]["votes"].values():
if c not in vote:
continue
vote_sum[c] += 2 * vote[c] - 1
concepts[c] = vote_sum[c] > 0 if vote_sum[c] != 0 else None
global_variables.all_metadata[current_split][idx]["concepts"] = concepts
global_variables.save_metadata(current_split)
gr.Info("Submit success")
return get_next_image(
split,
concepts,
filtered_indices,
selected_concepts,
profile
)
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"## # Image Selection",
)
split = gr.Radio(
label="Split",
choices=["train", "validation", "test"],
value="train",
)
concepts = gr.Dropdown(
label="Concepts",
multiselect=True,
choices=CONCEPTS,
)
with gr.Group():
voted_concepts = gr.CheckboxGroup(
label="Voted Concepts",
choices=CONCEPTS,
)
with gr.Row():
next_button = gr.Button(
value="Next",
)
gr.LoginButton()
submit_button = gr.Button(
value="Submit",
)
with gr.Group():
gr.Markdown(
"## # Image Info",
)
im_class = gr.Textbox(
label="Class",
)
im_concepts = gr.JSON(
label="Concepts",
)
with gr.Column():
image = gr.Image(
label="Image",
)
current_image = gr.State(None)
filtered_indices = gr.State({
split: list(range(len(global_variables.all_metadata[split])))
for split in global_variables.all_metadata
})
selected_concepts = gr.State([])
common_output = [
image,
voted_concepts,
current_image,
im_class,
im_concepts,
filtered_indices,
selected_concepts
]
next_button.click(
get_next_image,
inputs=[split, concepts, filtered_indices, selected_concepts],
outputs=common_output
)
submit_button.click(
submit_label,
inputs=[voted_concepts, current_image, split, concepts, filtered_indices, selected_concepts],
outputs=common_output
)
|