File size: 5,570 Bytes
405b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de554eb
405b0bd
813250f
405b0bd
 
813250f
36c11e4
405b0bd
 
 
 
 
 
36c11e4
405b0bd
813250f
 
405b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813250f
9b44168
 
 
405b0bd
 
 
 
 
 
 
 
9b44168
 
 
 
 
 
405b0bd
 
 
 
 
 
 
 
 
 
bec033e
405b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b44168
 
 
 
 
405b0bd
7896579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813250f
 
405b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b44168
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Interface for labeling concepts in images.
"""

from typing import Optional

import gradio as gr

from src import global_variables
from src.constants import CONCEPTS, ASSETS_FOLDER, DATASET_NAME

def get_image(
    step: int,
    split: str,
    index: str,
    filtered_indices: dict,
    profile: gr.OAuthProfile
):
    username = profile.username
    try:
        int_index = int(index)
    except:
        gr.Warning("Error parsing index using 0")
        int_index = 0
    sample_idx = int_index + step
    if sample_idx < 0:
        gr.Warning("No previous image.")
        sample_idx = 0
    if sample_idx >= len(global_variables.all_metadata[split]):
        gr.Warning("No next image.")
        sample_idx = len(global_variables.all_metadata[split]) - 1
    sample = global_variables.all_metadata[split][sample_idx]
    image_path = f"{ASSETS_FOLDER}/{DATASET_NAME}/data/{split}/{sample['file_name']}"
    try:
        username_votes = global_variables.all_votes[sample["id"]][username]
        voted_concepts = [c for c in CONCEPTS if username_votes.get(c, False)]
        unseen_concepts = [c for c in CONCEPTS if c not in username_votes]
    except KeyError:
        voted_concepts = []
        unseen_concepts = []
    tie_concepts = [c for c in CONCEPTS if sample[c] is None]

    return (
        image_path, 
        voted_concepts, 
        f"{split}:{sample_idx}", 
        sample["class"], 
        {c: sample[c] for c in CONCEPTS},
        str(sample_idx),
        unseen_concepts,
        tie_concepts,
        filtered_indices, 
    )

def make_get_image(step):
    def f(
        split: str,
        index: str,
        filtered_indices: dict,
        profile: gr.OAuthProfile 
    ):
        return get_image(step, split, index, filtered_indices, profile)
    return f

get_next_image = make_get_image(1)
get_prev_image = make_get_image(-1)
get_current_image = make_get_image(0)

def submit_label(
    voted_concepts: list,
    current_image: Optional[str],
    split, 
    index,
    filtered_indices, 
    profile: gr.OAuthProfile
):
    username = profile.username
    if current_image is None:
        gr.Warning("No image selected.")
        return None, None, None, None, None, None, None, index, filtered_indices
    
    global_variables.update_votes(username, current_image, voted_concepts)

    gr.Info("Submit success")
    return get_next_image(
        split, 
        index,
        filtered_indices,
        profile
    )
    
def save_current_work(
    profile: gr.OAuthProfile,
):
    username = profile.username
    global_variables.save_current_work(username)
    gr.Info("Save success")

with gr.Blocks() as interface:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                gr.Markdown(
                    "## # Image Selection",
                )
                split = gr.Radio(
                    label="Split",
                    choices=["train", "test"],
                    value="train",
                )
                index = gr.Textbox(
                    value="0",
                    label="Index",
                    max_lines=1,
                )

            with gr.Row():
                prev_button = gr.Button(
                    value="Prev",
                )
                next_button = gr.Button(
                    value="Next",
                )
                gr.LoginButton()
                submit_button = gr.Button(
                    value="Local Submit",
                )
            with gr.Row():
                save_button = gr.Button(
                    value="Save",
                )

            with gr.Group():
                voted_concepts = gr.CheckboxGroup(
                    label="Voted Concepts",
                    choices=CONCEPTS,
                )
                unseen_concepts = gr.CheckboxGroup(
                    label="Previously Unseen Concepts",
                    choices=CONCEPTS,
                )
                tie_concepts = gr.CheckboxGroup(
                    label="Tie Concepts",
                    choices=CONCEPTS,
                )

            with gr.Group():
                gr.Markdown(
                    "##  # Image Info",
                )
                im_class = gr.Textbox(
                    label="Class",
                )
                im_concepts = gr.JSON(
                    label="Concepts",
                )
        with gr.Column():
            image = gr.Image(
                label="Image",
            )
    current_image = gr.State(None)
    filtered_indices = gr.State({
        split: list(range(len(global_variables.all_metadata[split])))
        for split in global_variables.all_metadata
    })
    common_output = [
        image, 
        voted_concepts, 
        current_image, 
        im_class,
        im_concepts,
        index,
        unseen_concepts,
        tie_concepts,
        filtered_indices, 
    ]
    common_input = [split, index, filtered_indices]
    prev_button.click(
        get_prev_image, 
        inputs=common_input,
        outputs=common_output
    )
    next_button.click(
        get_next_image, 
        inputs=common_input,
        outputs=common_output
    )
    submit_button.click(
        submit_label,
        inputs=[voted_concepts, current_image, split, index, filtered_indices],
        outputs=common_output
    )
    index.submit(
        get_current_image,
        inputs=common_input,
        outputs=common_output,
    )

    save_button.click(
        save_current_work,
        outputs=[image]
    )