Real-Time-Latent-SDXL-Lightning / app-txt2imglora.py
radames's picture
fix
ec8114e
raw
history blame
7.51 kB
import asyncio
import json
import logging
import traceback
from pydantic import BaseModel
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import (
StreamingResponse,
JSONResponse,
HTMLResponse,
FileResponse,
)
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
from compel import Compel
import torch
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import io
import uuid
import os
import time
import psutil
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
WIDTH = 512
HEIGHT = 512
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
# change to torch.float16 to save GPU memory
torch_dtype = torch.float
print(f"TIMEOUT: {TIMEOUT}")
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
model_id = "wavymulder/Analog-Diffusion"
lcm_lora_id = "lcm-sd/lcm-sd1.5-lora"
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained(model_id)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=True)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights(
lcm_lora_id,
weight_name="lcm_sd_lora.safetensors",
adapter_name="lcm",
use_auth_token=HF_TOKEN,
)
compel_proc = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
)
user_queue_map = {}
class InputParams(BaseModel):
seed: int = 2159232
prompt: str
guidance_scale: float = 0.5
strength: float = 0.5
steps: int = 4
lcm_steps: int = 50
width: int = WIDTH
height: int = HEIGHT
def predict(params: InputParams):
generator = torch.manual_seed(params.seed)
prompt_embeds = compel_proc(params.prompt)
results = pipe(
prompt_embeds=prompt_embeds,
generator=generator,
num_inference_steps=params.steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
return results.images[0]
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
print("Server is full")
await websocket.send_json({"status": "error", "message": "Server is full"})
await websocket.close()
return
try:
uid = str(uuid.uuid4())
print(f"New user connected: {uid}")
await websocket.send_json(
{"status": "success", "message": "Connected", "userId": uid}
)
user_queue_map[uid] = {
"queue": asyncio.Queue(),
}
await websocket.send_json(
{"status": "start", "message": "Start Streaming", "userId": uid}
)
await handle_websocket_data(websocket, uid)
except WebSocketDisconnect as e:
logging.error(f"WebSocket Error: {e}, {uid}")
traceback.print_exc()
finally:
print(f"User disconnected: {uid}")
queue_value = user_queue_map.pop(uid, None)
queue = queue_value.get("queue", None)
if queue:
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
@app.get("/queue_size")
async def get_queue_size():
queue_size = len(user_queue_map)
return JSONResponse({"queue_size": queue_size})
@app.get("/stream/{user_id}")
async def stream(user_id: uuid.UUID):
uid = str(user_id)
try:
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
async def generate():
while True:
params = await queue.get()
if params is None:
continue
image = predict(params)
if image is None:
continue
frame_data = io.BytesIO()
image.save(frame_data, format="JPEG")
frame_data = frame_data.getvalue()
if frame_data is not None and len(frame_data) > 0:
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
await asyncio.sleep(1.0 / 120.0)
return StreamingResponse(
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
)
except Exception as e:
logging.error(f"Streaming Error: {e}, {user_queue_map}")
traceback.print_exc()
return HTTPException(status_code=404, detail="User not found")
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
uid = str(user_id)
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
if not queue:
return HTTPException(status_code=404, detail="User not found")
last_time = time.time()
try:
while True:
params = await websocket.receive_json()
params = InputParams(**params)
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
await queue.put(params)
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
await websocket.send_json(
{
"status": "timeout",
"message": "Your session has ended",
"userId": uid,
}
)
await websocket.close()
return
except Exception as e:
logging.error(f"Error: {e}")
traceback.print_exc()
@app.get("/", response_class=HTMLResponse)
async def root():
return FileResponse("./static/txt2imglora.html")