File size: 13,783 Bytes
2aeb649
 
 
a1c95a9
2aeb649
 
9071ed9
2aeb649
 
2a43fc6
65351e7
52877e8
65351e7
2aeb649
 
 
 
 
 
 
 
 
 
e48859b
c50ed1f
 
2aeb649
 
 
 
 
 
 
 
 
 
 
 
 
 
8d92190
 
 
 
 
 
 
 
9071ed9
3ab46fc
8d92190
 
2aeb649
8d92190
2aeb649
 
 
 
 
9071ed9
 
2aeb649
 
 
 
 
 
 
9071ed9
2aeb649
 
 
 
 
9071ed9
 
 
2aeb649
 
 
 
 
 
 
 
 
5e31c93
2aeb649
e48859b
2aeb649
 
e48859b
2aeb649
 
8d55e8b
f212c91
9c76a63
f212c91
2aeb649
 
f212c91
2aeb649
f212c91
2aeb649
f212c91
2aeb649
f212c91
2aeb649
 
 
9071ed9
 
6531480
9071ed9
6531480
2aeb649
 
3f71e88
6531480
 
2aeb649
8d92190
3f71e88
6531480
2aeb649
 
 
 
 
 
be3e019
7899646
2aeb649
 
8d92190
2aeb649
9071ed9
cacf670
c002974
cacf670
0dc3bb4
2aeb649
ef0171e
2aeb649
 
 
2a43fc6
 
 
 
 
 
 
9f4249c
2a43fc6
 
 
 
 
 
 
 
 
 
 
 
54bc5b6
2a43fc6
 
 
 
 
 
4cca9c8
7ddb9ce
 
2a43fc6
 
 
 
b189c01
e48859b
2a43fc6
2d75e4d
c50ed1f
 
 
 
2417ae8
a1f1af1
2417ae8
 
a1f1af1
2417ae8
 
 
b189c01
2aeb649
 
 
 
 
78994f5
 
 
0817061
eebe32a
0817061
 
 
 
 
e48859b
0817061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aeb649
 
 
 
 
 
c2dfb4a
 
1156c51
c2dfb4a
2aeb649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e751d
b73f027
e6d2c96
2aeb649
 
 
 
 
74df29d
2aeb649
5751e99
2aeb649
 
 
 
74df29d
2aeb649
f212c91
d2a957f
2a43fc6
8d55e8b
0817061
2aeb649
e4ee626
4c06147
4b59481
c2dfb4a
2aeb649
d7d7222
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import requests
import os
import gradio as gr
from huggingface_hub import HfApi, update_repo_visibility
from slugify import slugify
import gradio as gr
import re
import uuid
from typing import Optional
import json

TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "multimodalart"]

def get_json_data(url):
    api_url = f"https://civitai.com/api/v1/models/{url.split('/')[4]}"
    try:
        response = requests.get(api_url)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        print(f"Error fetching JSON data: {e}")
        return None

def check_nsfw(json_data, profile):
    if(profile.preferred_username in TRUSTED_UPLOADERS):
        return True
    if json_data["nsfw"]:
        return False
    for model_version in json_data["modelVersions"]:
        for image in model_version["images"]:
            if image["nsfw"] != "None":
                return False
    return True

def extract_info(json_data):
    if json_data["type"] == "LORA":
        for model_version in json_data["modelVersions"]:
            if model_version["baseModel"] in ["SDXL 1.0", "SDXL 0.9"]:
                for file in model_version["files"]:
                    if file["primary"]:
                        # Start by adding the primary file to the list
                        urls_to_download = [{"url": file["downloadUrl"], "filename": file["name"], "type": "weightName"}]
                        
                        # Then append all image URLs to the list
                        for image in model_version["images"]:
                            urls_to_download.append({
                                "url": image["url"],
                                "filename": os.path.basename(image["url"]),
                                "type": "imageName",
                                "prompt": image["meta"]["prompt"] if image["meta"] is not None and "prompt" in image["meta"] else ""
                            })
                        
                        info = {
                            "urls_to_download": urls_to_download,
                            "id": model_version["id"],
                            "modelId": model_version["modelId"],
                            "name": json_data["name"],
                            "description": json_data["description"],
                            "trainedWords": model_version["trainedWords"],
                            "creator": json_data["creator"]["username"],
                            "tags": json_data["tags"]
                        }
                        return info
    return None

def download_files(info, folder="."):
    downloaded_files = {
        "imageName": [],
        "imagePrompt": [],
        "weightName": []
    }
    for item in info["urls_to_download"]:
        download_file(item["url"], item["filename"], folder)
        downloaded_files[item["type"]].append(item["filename"])
        if(item["type"] == "imageName"):
            prompt_clean = re.sub(r'<.*?>', '', item["prompt"])
            downloaded_files["imagePrompt"].append(prompt_clean)
    return downloaded_files

def download_file(url, filename, folder="."):
    try:
        response = requests.get(url)
        response.raise_for_status()
        with open(f"{folder}/{filename}", 'wb') as f:
            f.write(response.content)
    except requests.exceptions.RequestException as e:
        raise gr.Error(f"Error downloading file: {e}")

def process_url(url, profile, do_download=True, folder="."):
    json_data = get_json_data(url)
    if json_data:
        if check_nsfw(json_data, profile):
            info = extract_info(json_data)
            if info:
                if(do_download):
                    downloaded_files = download_files(info, folder)
                else:
                    downloaded_files = []
                return info, downloaded_files
            else:
                raise gr.Error("Only SDXL LoRAs are supported for now")
        else:
            raise gr.Error("This model has content tagged as unsafe by CivitAI")
    else:
        raise gr.Error("Something went wrong in fetching CivitAI API")

def create_readme(info, downloaded_files, is_author=True, folder="."):
    readme_content = ""
    original_url = f"https://civitai.com/models/{info['id']}"
    non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
    default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers"]
    civit_tags = [t for t in info["tags"] if t not in default_tags]
    widget_prompts = "\n- text: ".join(downloaded_files["imagePrompt"])
    tags = default_tags + civit_tags
    unpacked_tags = "\n- ".join(tags)
    content = f"""---
license: other
tags:
- {unpacked_tags}

base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: {info['trainedWords'][0] if 'trainedWords' in info and len(info['trainedWords']) > 0 else ''}
widget:
- text: {widget_prompts}
---

# {info["name"]}

{non_author_disclaimer if not is_author else ''}

![Image 0]({downloaded_files["imageName"][0]})
> {downloaded_files["imagePrompt"][0]}

{info["description"]}

"""
    for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])):
        if index == 1:
            content += f"## Image examples for the model:\n![Image {index}]({image})\n> {prompt}\n"
        elif index > 1:
            content += f"\n![Image {index}]({image})\n> {prompt}\n"
    readme_content += content + "\n"
    print(readme_content)
    with open(f"{folder}/README.md", "w") as file:
        file.write(readme_content)

def get_creator(username):
    url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D"
    headers = {
        "authority": "civitai.com",
        "accept": "*/*",
        "accept-language": "en-BR,en;q=0.9,pt-BR;q=0.8,pt;q=0.7,es-ES;q=0.6,es;q=0.5,de-LI;q=0.4,de;q=0.3,en-GB;q=0.2,en-US;q=0.1,sk;q=0.1",
        "content-type": "application/json",
        "cookie": f'{os.environ["COOKIE_INFO"]}',
        "if-modified-since": "Tue, 22 Aug 2023 07:18:52 GMT",
        "referer": f"https://civitai.com/user/{username}/models",
        "sec-ch-ua": "\"Not.A/Brand\";v=\"8\", \"Chromium\";v=\"114\", \"Google Chrome\";v=\"114\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "macOS",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-origin",
        "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
    }
    response = requests.get(url, headers=headers)

    return response.json()

def extract_huggingface_username(username):
    data = get_creator(username)
    links = data.get('result', {}).get('data', {}).get('json', {}).get('links', [])
    for link in links:
        url = link.get('url', '')
        if url.startswith('https://huggingface.co/') or url.startswith('https://www.huggingface.co/'):
            username = url.split('/')[-1]
            return username

    return None


def check_civit_link(profile: Optional[gr.OAuthProfile], url):
    info, _ = process_url(url, profile, do_download=False)
    hf_username = extract_huggingface_username(info['creator'])
    attributes_methods = dir(profile)
    
    if(profile.preferred_username == "multimodalart"):
        return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
        
    if(not hf_username):
        no_username_text = f'If you are {info["creator"]} on CivitAI, hi! Your CivitAI profile seems to not have information about your Hugging Face account. Please visit <a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a> and include your 🤗 username there, here\'s mine:<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" /><br>(if you are not {info["creator"]}, you cannot submit their model at this time)'
        return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
    if(profile.preferred_username != hf_username):
        unmatched_username_text = '<h4>Oops, the Hugging Face account in your CivitAI profile seems to be different than the one your are using here. Please visit <a href="https://civitai.com/user/account">https://civitai.com/user/account</a> and update it there to match your Hugging Face account<br><img src="https://i.imgur.com/hCbo9uL.png" /></h4>'
        return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
    else:
        return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
        
def swap_fill(profile: Optional[gr.OAuthProfile]):
    if profile is None:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)

def show_output():
    return gr.update(visible=True)
    
def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], url, progress=gr.Progress(track_tqdm=True)):
    if not profile.name:
        return gr.Error("Are you sure you are logged in?")
    
    folder = str(uuid.uuid4())
    os.makedirs(folder, exist_ok=False)
    info, downloaded_files = process_url(url, profile, folder=folder)
    create_readme(info, downloaded_files, folder=folder)
    try:
        api = HfApi(token=os.environ["HUGGING_FACE_HUB_TOKEN"])
        username = api.whoami()["name"]
        slug_name = slugify(info["name"])
        repo_id = f"{username}/{profile.preferred_username}-{slug_name}"
        api.create_repo(repo_id=repo_id, private=True, exist_ok=True)
        api.upload_folder(
            folder_path=folder,
            repo_id=repo_id,
            repo_type="model",
        )
        api.update_repo_visibility(repo_id=repo_id, private=False)
    except:
        raise gr.Error("something went wrong")
        
    transfer_repos = gr.load("multimodalart/transfer_repos", hf_token=os.environ["HUGGING_FACE_HUB_TOKEN"], src="spaces")
    user_repo_id = f"{profile.preferred_username}/{slug_name}"
    response_code = transfer_repos(repo_id, user_repo_id)
    i = 0
    while response_code != "200":
        message = None
        if response_code == "409":
            if i < 3:
                user_repo_id = f"{profile.preferred_username}/{slug_name}-{i}"
                response_code = transfer_repos(repo_id, user_repo_id)
                i += 1
            else:
                message = "It seems this model has been uploaded already in your account."
        elif response_code == "404":
            message = "Something went wrong with the model upload. Try again."
        else:
            message = f"Unexpected response code: {response_code}."
    
        if message:
            api.delete_repo(repo_id=repo_id, repo_type="model")
            raise gr.Error(message)

    return f'''# Model uploaded to 🤗!
    ## Access it here [{user_repo_id}](https://huggingface.co/{user_repo_id}) '''


css = '''
#login {
    font-size: 0px;
    width: 100% !important;
    margin: 0 auto;
}
#logout {
    width: 100% !important;
    margin-top: 4em;
}
#login:after {
    content: 'Authorize this app before uploading your model';
    visibility: visible;
    display: block;
    font-size: var(--button-large-text-size);
}
#login:disabled{
    font-size: var(--button-large-text-size);
}
#login:disabled:after{
    content:''
}
#disabled_upload{
    opacity: 0.5;
    pointer-events:none;
}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown('''# Upload your CivitAI SDXL LoRA to Hugging Face 🤗
Get diffusers compatibility, a free GPU-based Inference Widget and possibility to submit to the [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) space
    ''')
    gr.LoginButton(elem_id="login")
    with gr.Column(elem_id="disabled_upload") as disabled_area:
        with gr.Row():
                        submit_source_civit = gr.Textbox(
                            label="CivitAI model URL",
                            info="URL of the CivitAI model, for now only SDXL LoRAs are supported",
                        )
        submit_button_civit = gr.Button("Upload model to Hugging Face and submit", interactive=False)
    with gr.Column(visible=False) as enabled_area:
        with gr.Row():
                        submit_source_civit = gr.Textbox(
                            label="CivitAI model URL",
                            info="URL of the CivitAI model, for now only SDXL LoRAs are supported",
                        )
        instructions = gr.HTML("")
        try_again_button = gr.Button("I have added my HF profile to my account (it may take 1 minute to refresh)", visible=False)
        submit_button_civit = gr.Button("Upload model to Hugging Face", interactive=False)
        output = gr.Markdown(label="Output progress", visible=False)

    demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area])
    submit_source_civit.change(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
    try_again_button.click(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
    submit_button_civit.click(fn=show_output, inputs=[], outputs=[output]).then(fn=upload_civit_to_hf, inputs=[submit_source_civit], outputs=[output])
    gr.LogoutButton(elem_id="logout")
demo.queue()
demo.launch()