Spaces:
Running
Running
File size: 7,049 Bytes
2aeb649 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import requests
import os
import gradio as gr
from huggingface_hub import HfApi
from slugify import slugify
import gradio as gr
import uuid
from typing import Optional
def get_json_data(url):
api_url = f"https://civitai.com/api/v1/models/{url.split('/')[4]}"
try:
response = requests.get(api_url)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching JSON data: {e}")
return None
def check_nsfw(json_data):
if json_data["nsfw"]:
return False
for model_version in json_data["modelVersions"]:
for image in model_version["images"]:
if image["nsfw"] != "None":
return False
return True
def extract_info(json_data):
if json_data["type"] == "LORA":
for model_version in json_data["modelVersions"]:
if model_version["baseModel"] in ["SDXL 1.0", "SDXL 0.9"]:
for file in model_version["files"]:
if file["primary"]:
info = {
"urls_to_download": [
{"url": file["downloadUrl"], "filename": file["name"], "type": "weightName"},
{"url": model_version["images"][0]["url"], "filename": os.path.basename(model_version["images"][0]["url"]), "type": "imageName"}
],
"id": model_version["id"],
"modelId": model_version["modelId"],
"name": json_data["name"],
"description": json_data["description"],
"trainedWords": model_version["trainedWords"],
"creator": json_data["creator"]["username"]
}
return info
return None
def download_files(info, folder="."):
downloaded_files = {
"imageName": [],
"weightName": []
}
for item in info["urls_to_download"]:
download_file(item["url"], item["filename"], folder)
downloaded_files[item["type"]].append(item["filename"])
return downloaded_files
def download_file(url, filename, folder="."):
try:
response = requests.get(url)
response.raise_for_status()
with open(f"{folder}/{filename}", 'wb') as f:
f.write(response.content)
print(f"{filename} downloaded.")
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
def process_url(url, folder="."):
json_data = get_json_data(url)
if json_data:
if check_nsfw(json_data):
info = extract_info(json_data)
if info:
downloaded_files = download_files(info, folder)
return info, downloaded_files
else:
print("No model met the criteria.")
else:
print("NSFW content found.")
else:
print("Failed to get JSON data.")
def create_readme(info, downloaded_files, is_author, folder="."):
readme_content = ""
original_url = f"https://civitai.com/models/{info['id']}"
non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
content = f"""---
license: other
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: {info["trainedWords"][0]}
widget:
- text: {info["trainedWords"][0]}
---
# {info["name"]}
{non_author_disclaimer if not is_author else ''}
![Image]({downloaded_files["imageName"][0]})
{info["description"]}
"""
readme_content += content + "\n"
with open(f"{folder}/README.md", "w") as file:
file.write(readme_content)
def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], url, is_author, progress=gr.Progress(track_tqdm=True)):
if not profile.name:
return gr.Error("Are you sure you are logged in?")
folder = str(uuid.uuid4())
os.makedirs(folder, exist_ok=False)
info, downloaded_files = process_url(url, folder)
create_readme(info, downloaded_files, False, folder)
try:
api = HfApi(token=hf_token)
username = api.whoami()["name"]
slug_name = slugify(info["name"])
repo_id = f"{username}/{slug_name}"
api.create_repo(repo_id=repo_id, private=True, exist_ok=True)
api.upload_folder(
folder_path=folder,
repo_id=repo_id,
repo_type="model"
)
except:
raise gr.Error("something went wrong")
return "Model uploaded!"
def swap_fill(profile: Optional[gr.OAuthProfile]):
if profile is None:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
css = '''
#login {
font-size: 0px;
width: 100% !important;
margin: 0 auto;
}
#login:after {
content: 'Authorize this app before uploading your model';
visibility: visible;
display: block;
font-size: var(--button-large-text-size);
}
#login:disabled{
font-size: var(--button-large-text-size);
}
#login:disabled:after{
content:''
}
#disabled_upload{
opacity: 0.5;
pointer-events:none;
}
'''
with gr.Blocks(css=css) as demo:
gr.LoginButton(elem_id="login")
with gr.Column(elem_id="disabled_upload") as disabled_area:
with gr.Row():
submit_source_civit = gr.Textbox(
label="CivitAI model URL",
info="URL of the CivitAI model, make sure it is a SDXL LoRA",
)
is_author = gr.Checkbox(label="Are you the model author?", info="If you are not the author, a disclaimer with information about the author and the CivitAI source will be added", value=False)
submit_button_civit = gr.Button("Upload model to Hugging Face and submit")
output = gr.Textbox(label="Output progress")
with gr.Column(visible=False) as enabled_area:
with gr.Row():
submit_source_civit = gr.Textbox(
label="CivitAI model URL",
info="URL of the CivitAI model, make sure it is a SDXL LoRA",
)
is_author = gr.Checkbox(label="Are you the model author?", info="If you are not the author, a disclaimer with information about the author and the CivitAI source will be added", value=False)
submit_button_civit = gr.Button("Upload model to Hugging Face")
output = gr.Textbox(label="Output progress")
demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area])
submit_button_civit.click(fn=upload_civit_to_hf, inputs=[submit_source_civit, is_author], outputs=[output])
demo.queue()
demo.launch(share=True) |