import requests import os import gradio as gr from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file, update_repo_visibility from slugify import slugify import gradio as gr import re import uuid from typing import Optional import json from bs4 import BeautifulSoup TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "multimodalart", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"] def get_json_data(url): url_split = url.split('/') api_url = f"https://civitai.com/api/v1/models/{url_split[4]}" try: response = requests.get(api_url) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: print(f"Error fetching JSON data: {e}") return None def check_nsfw(json_data, profile): if json_data["nsfw"]: return False print(profile) if(profile.username in TRUSTED_UPLOADERS): return True for model_version in json_data["modelVersions"]: for image in model_version["images"]: if image["nsfwLevel"] > 5: return False return True def get_prompts_from_image(image_id): url = f'https://civitai.com/images/{image_id}' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') content = soup.find_all(class_='mantine-Code-root mantine-Code-block mantine-2v44jn') if(content): if(len(content) > 1): return content[0].text, content[1].text else: return content[0].text, "" else: return "", "" def extract_info(json_data): if json_data["type"] == "LORA": for model_version in json_data["modelVersions"]: if model_version["baseModel"] in ["SDXL 1.0", "SDXL 0.9", "SD 1.5", "SD 1.4", "SD 2.1", "SD 2.0", "SD 2.0 768", "SD 2.1 768"]: for file in model_version["files"]: print(file) if "primary" in file: # Start by adding the primary file to the list urls_to_download = [{"url": file["downloadUrl"], "filename": file["name"], "type": "weightName"}] # Then append all image URLs to the list for image in model_version["images"]: image_id = image["url"].split("/")[-1].split(".")[0] prompt, negative_prompt = get_prompts_from_image(image_id) if image["nsfwLevel"] > 5: pass #ugly before checking the actual logic else: urls_to_download.append({ "url": image["url"], "filename": os.path.basename(image["url"]), "type": "imageName", "prompt": prompt, #if "meta" in image and "prompt" in image["meta"] else "" "negative_prompt": negative_prompt }) model_mapping = { "SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0", "SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0", "SD 1.5": "runwayml/stable-diffusion-v1-5", "SD 1.4": "CompVis/stable-diffusion-v1-4", "SD 2.1": "stabilityai/stable-diffusion-2-1-base", "SD 2.0": "stabilityai/stable-diffusion-2-base", "SD 2.1 768": "stabilityai/stable-diffusion-2-1", "SD 2.0 768": "stabilityai/stable-diffusion-2" } base_model = model_mapping[model_version["baseModel"]] info = { "urls_to_download": urls_to_download, "id": model_version["id"], "baseModel": base_model, "modelId": model_version.get("modelId", ""), "name": json_data["name"], "description": json_data["description"], "trainedWords": model_version["trainedWords"] if "trainedWords" in model_version else [], "creator": json_data["creator"]["username"], "tags": json_data["tags"], "allowNoCredit": json_data["allowNoCredit"], "allowCommercialUse": json_data["allowCommercialUse"], "allowDerivatives": json_data["allowDerivatives"], "allowDifferentLicense": json_data["allowDifferentLicense"] } return info return None def download_files(info, folder="."): downloaded_files = { "imageName": [], "imagePrompt": [], "imageNegativePrompt": [], "weightName": [] } for item in info["urls_to_download"]: download_file(item["url"], item["filename"], folder) downloaded_files[item["type"]].append(item["filename"]) if(item["type"] == "imageName"): prompt_clean = re.sub(r'<.*?>', '', item["prompt"]) negative_prompt_clean = re.sub(r'<.*?>', '', item["negative_prompt"]) downloaded_files["imagePrompt"].append(prompt_clean) downloaded_files["imageNegativePrompt"].append(negative_prompt_clean) return downloaded_files def download_file(url, filename, folder="."): headers = {} try: response = requests.get(url, headers=headers) response.raise_for_status() except requests.exceptions.HTTPError as e: print(e) if response.status_code == 401: headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API"]}' try: response = requests.get(url, headers=headers) response.raise_for_status() except requests.exceptions.RequestException as e: raise gr.Error(f"Error downloading file: {e}") else: raise gr.Error(f"Error downloading file: {e}") except requests.exceptions.RequestException as e: raise gr.Error(f"Error downloading file: {e}") with open(f"{folder}/{filename}", 'wb') as f: f.write(response.content) def process_url(url, profile, do_download=True, folder="."): json_data = get_json_data(url) if json_data: if check_nsfw(json_data, profile): info = extract_info(json_data) if info: if(do_download): downloaded_files = download_files(info, folder) else: downloaded_files = [] return info, downloaded_files else: raise gr.Error("Only SDXL LoRAs are supported for now") else: raise gr.Error("This model has content tagged as unsafe by CivitAI") else: raise gr.Error("Something went wrong in fetching CivitAI API") def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_author=True, folder="."): readme_content = "" original_url = f"https://civitai.com/models/{info['modelId']}" link_civit_disclaimer = f'([CivitAI]({original_url}))' non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:' default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "migrated"] civit_tags = [t.replace(":", "") for t in info["tags"] if t not in default_tags] tags = default_tags + civit_tags unpacked_tags = "\n- ".join(tags) trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else [] formatted_words = ', '.join(f'`{word}`' for word in trained_words) if formatted_words: trigger_words_section = f"""## Trigger words You should use {formatted_words} to trigger the image generation. """ else: trigger_words_section = "" widget_content = "" for index, (prompt, negative_prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageNegativePrompt"], downloaded_files["imageName"])): escaped_prompt = prompt.replace("'", "''") negative_prompt_content = f"""parameters: negative_prompt: {negative_prompt} """ if negative_prompt else "" widget_content += f"""- text: '{escaped_prompt if escaped_prompt else ' ' }' {negative_prompt_content} output: url: >- {image} """ content = f"""--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit={info["allowNoCredit"]}&allowCommercialUse={info["allowCommercialUse"][0]}&allowDerivatives={info["allowDerivatives"]}&allowDifferentLicense={info["allowDifferentLicense"]} tags: - {unpacked_tags} base_model: {info["baseModel"]} instance_prompt: {info['trainedWords'][0] if 'trainedWords' in info and len(info['trainedWords']) > 0 else ''} widget: {widget_content} --- # {info["name"]} {non_author_disclaimer if not is_author else ''} {link_civit_disclaimer if link_civit else ''} ## Model description {info["description"]} {trigger_words_section} ## Download model Weights for this model are available in Safetensors format. [Download](/{user_repo_id}/tree/main) them in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"][0]}') image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) """ #for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])): # if index == 1: # content += f"## Image examples for the model:\n![Image {index}]({image})\n> {prompt}\n" # elif index > 1: # content += f"\n![Image {index}]({image})\n> {prompt}\n" readme_content += content + "\n" with open(f"{folder}/README.md", "w") as file: file.write(readme_content) def get_creator(username): url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D" headers = { "authority": "civitai.com", "accept": "*/*", "accept-language": "en-BR,en;q=0.9,pt-BR;q=0.8,pt;q=0.7,es-ES;q=0.6,es;q=0.5,de-LI;q=0.4,de;q=0.3,en-GB;q=0.2,en-US;q=0.1,sk;q=0.1", "content-type": "application/json", "cookie": f'{os.environ["COOKIE_INFO"]}', "if-modified-since": "Tue, 22 Aug 2023 07:18:52 GMT", "referer": f"https://civitai.com/user/{username}/models", "sec-ch-ua": "\"Not.A/Brand\";v=\"8\", \"Chromium\";v=\"114\", \"Google Chrome\";v=\"114\"", "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": "macOS", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" } response = requests.get(url, headers=headers) return response.json() def extract_huggingface_username(username): data = get_creator(username) links = data.get('result', {}).get('data', {}).get('json', {}).get('links', []) for link in links: url = link.get('url', '') if url.startswith('https://huggingface.co/') or url.startswith('https://www.huggingface.co/'): username = url.split('/')[-1] return username return None def check_civit_link(profile: Optional[gr.OAuthProfile], url): info, _ = process_url(url, profile, do_download=False) hf_username = extract_huggingface_username(info['creator']) attributes_methods = dir(profile) if(profile.username == "multimodalart"): return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True) if(not hf_username): no_username_text = f'If you are {info["creator"]} on CivitAI, hi! Your CivitAI profile seems to not have information about your Hugging Face account. Please visit https://civitai.com/user/account and include your ๐Ÿค— username there, here\'s mine:

(if you are not {info["creator"]}, you cannot submit their model at this time)' return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False) if(profile.username != hf_username): unmatched_username_text = '

Oops, the Hugging Face account in your CivitAI profile seems to be different than the one your are using here. Please visit https://civitai.com/user/account and update it there to match your Hugging Face account

' return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False) else: return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True) def swap_fill(profile: Optional[gr.OAuthProfile]): if profile is None: return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) def show_output(): return gr.update(visible=True) def list_civit_models(username): url = f"https://civitai.com/api/v1/models?username={username}&limit=100" json_models_list = [] while url: response = requests.get(url) data = response.json() # Add current page items to the list json_models_list.extend(data.get('items', [])) # Check if there is a nextPage URL in the metadata metadata = data.get('metadata', {}) url = metadata.get('nextPage', None) urls = "" for model in json_models_list: urls += f'https://civitai.com/models/{model["id"]}/{slugify(model["name"])}\n' return urls def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, url, link_civit=False): if not profile.name: return gr.Error("Are you sure you are logged in?") gr.Info(f"Starting uploading {url}") folder = str(uuid.uuid4()) os.makedirs(folder, exist_ok=False) info, downloaded_files = process_url(url, profile, folder=folder) gr.Info(f"Model {info['name']} found, starting download...") username = {profile.username} slug_name = slugify(info["name"]) user_repo_id = f"{profile.username}/{slug_name}" create_readme(info, downloaded_files, user_repo_id, link_civit, folder=folder) try: create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token) gr.Info("Starting to upload repo to Hugging Face...") upload_folder( folder_path=folder, repo_id=user_repo_id, repo_type="model", token=oauth_token.token ) update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token) except Exception as e: print(e) raise gr.Error("Your Hugging Face Token expired. Log out and in again to upload your models.") return f'''# Model uploaded to ๐Ÿค—! ## Access it here [{user_repo_id}](https://huggingface.co/{user_repo_id}) ''' def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, urls, link_civit=False): urls = urls.split("\n") print(urls) upload_results = "" for url in urls: if(url): try: upload_result = upload_civit_to_hf(profile, oauth_token, url, link_civit) upload_results += upload_result+"\n" except Exception as e: print(e) gr.Warning(f"Error uploading the model {link_civit}") return upload_results css = ''' #login { width: 100% !important; margin: 0 auto; } #disabled_upload{ opacity: 0.5; pointer-events:none; } ''' with gr.Blocks(css=css) as demo: gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face ๐Ÿค— By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget, and possibility to submit your model to the [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) โœจ ''') gr.LoginButton(elem_id="login") with gr.Column(elem_id="disabled_upload") as disabled_area: with gr.Row(): submit_source_civit = gr.Textbox( placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl", label="CivitAI model URL", info="URL of the CivitAI LoRA", ) submit_button_civit = gr.Button("Upload model to Hugging Face and submit", interactive=False) with gr.Column(visible=False) as enabled_area: with gr.Column(): submit_source_civit = gr.Textbox( placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl", label="CivitAI model URL", info="URL of the CivitAI LoRA", ) with gr.Accordion("Bulk upload (bring in multiple LoRAs)", open=False): civit_username_to_bulk = gr.Textbox(label="CivitAI username (optional)", info="Type your CivitAI username here to automagically fill the bulk models URLs list below (optional, you can paste links down here directly)") submit_bulk_civit = gr.Textbox( label="CivitAI bulk models URLs", info="Add one URL per line", lines=6, ) link_civit = gr.Checkbox(label="Link back to CivitAI?", value=False) bulk_button = gr.Button("Bulk upload") instructions = gr.HTML("") try_again_button = gr.Button("I have added my HF profile to my account (it may take 1 minute to refresh)", visible=False) submit_button_civit = gr.Button("Upload model to Hugging Face", interactive=False) output = gr.Markdown(label="Output progress", visible=False) demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False) submit_source_civit.change(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit], queue=False) civit_username_to_bulk.change(fn=list_civit_models, inputs=[civit_username_to_bulk], outputs=[submit_bulk_civit], queue=False) try_again_button.click(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit], queue=False) submit_button_civit.click(fn=show_output, inputs=[], outputs=[output]).then(fn=upload_civit_to_hf, inputs=[submit_source_civit, link_civit], outputs=[output], queue=False) bulk_button.click(fn=show_output, inputs=[], outputs=[output]).then(fn=bulk_upload, inputs=[submit_bulk_civit, link_civit], outputs=[output], queue=False) #gr.LogoutButton(elem_id="logout") demo.queue() demo.launch()