ctrl-x / ctrl_x /pipelines /pipeline_sdxl.py
multimodalart's picture
Upload folder using huggingface_hub
3aff77a verified
raw
history blame
32.7 kB
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from diffusers import StableDiffusionXLPipeline
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import\
rescale_noise_cfg, retrieve_latents, retrieve_timesteps
from diffusers.utils import BaseOutput, deprecate
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import PIL
import torch
from ..utils import *
from ..utils.sdxl import *
BATCH_ORDER = [
"structure_uncond", "appearance_uncond", "uncond", "structure_cond", "appearance_cond", "cond",
]
def get_last_control_i(control_schedule, num_inference_steps):
if control_schedule is None:
return num_inference_steps, num_inference_steps
def max_(l):
if len(l) == 0:
return 0.0
return max(l)
structure_max = 0.0
appearance_max = 0.0
for block in control_schedule.values():
if isinstance(block, list): # Handling mid_block
block = {0: block}
for layer in block.values():
structure_max = max(structure_max, max_(layer[0] + layer[1]))
appearance_max = max(appearance_max, max_(layer[2]))
structure_i = round(num_inference_steps * structure_max)
appearance_i = round(num_inference_steps * appearance_max)
return structure_i, appearance_i
@dataclass
class CtrlXStableDiffusionXLPipelineOutput(BaseOutput):
images: Union[List[PIL.Image.Image], np.ndarray]
structures = Union[List[PIL.Image.Image], np.ndarray]
appearances = Union[List[PIL.Image.Image], np.ndarray]
class CtrlXStableDiffusionXLPipeline(StableDiffusionXLPipeline): # diffusers==0.28.0
def prepare_latents(
self, image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
dtype, device, generator=None, noise=None,
):
batch_size = batch_size * num_images_per_prompt
if noise is None:
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor
)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
noise = noise * self.scheduler.init_noise_sigma # Starting noise, need to scale
else:
noise = noise.to(device)
if image is None:
return noise, None
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4: # Image already in latents form
init_latents = image
else:
# Make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.to(torch.float32)
self.vae.to(torch.float32)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
init_latents = init_latents.to(dtype)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# Expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
return noise, init_latents
@property
def structure_guidance_scale(self):
return self._guidance_scale if self._structure_guidance_scale is None else self._structure_guidance_scale
@property
def appearance_guidance_scale(self):
return self._guidance_scale if self._appearance_guidance_scale is None else self._appearance_guidance_scale
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None, # TODO: Support prompt_2 and negative_prompt_2
structure_prompt: Optional[Union[str, List[str]]] = None,
appearance_prompt: Optional[Union[str, List[str]]] = None,
structure_image: Optional[PipelineImageInput] = None,
appearance_image: Optional[PipelineImageInput] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
positive_prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
guidance_scale: float = 5.0,
structure_guidance_scale: Optional[float] = None,
appearance_guidance_scale: Optional[float] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
structure_latents: Optional[torch.Tensor] = None,
appearance_latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None, # Positive prompt is concatenated with prompt, so no embeddings
structure_prompt_embeds: Optional[torch.Tensor] = None,
appearance_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
structure_pooled_prompt_embeds: Optional[torch.Tensor] = None,
appearance_pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
control_schedule: Optional[Dict] = None,
self_recurrence_schedule: Optional[List[int]] = [], # Format: [(start, end, num_repeat)]
decode_structure: Optional[bool] = True,
decode_appearance: Optional[bool] = True,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
# TODO: Add function argument documentation
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 0. Default height and width to U-Net
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs( # TODO: Custom check_inputs for our method
prompt,
None, # prompt_2
height,
width,
callback_steps,
negative_prompt = negative_prompt,
negative_prompt_2 = None, # negative_prompt_2
prompt_embeds = prompt_embeds,
negative_prompt_embeds = negative_prompt_embeds,
pooled_prompt_embeds = pooled_prompt_embeds,
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs = callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._structure_guidance_scale = structure_guidance_scale
self._appearance_guidance_scale = appearance_guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = None # denoising_end
self._denoising_start = None # denoising_start
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if batch_size * num_images_per_prompt != 1:
raise ValueError(
f"Pipeline currently does not support batch_size={batch_size} and num_images_per_prompt=1. "
"Effective batch size (batch_size * num_images_per_prompt) must be 1."
)
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
if positive_prompt is not None and positive_prompt != "":
prompt = prompt + ", " + positive_prompt # Add positive prompt with comma
# By default, only add positive prompt to the appearance prompt and not the structure prompt
if appearance_prompt is not None and appearance_prompt != "":
appearance_prompt = appearance_prompt + ", " + positive_prompt
(
prompt_embeds_,
negative_prompt_embeds,
pooled_prompt_embeds_,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt = prompt,
prompt_2 = None, # prompt_2
device = device,
num_images_per_prompt = num_images_per_prompt,
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
negative_prompt = negative_prompt,
negative_prompt_2 = None, # negative_prompt_2
prompt_embeds = prompt_embeds,
negative_prompt_embeds = negative_prompt_embeds,
pooled_prompt_embeds = pooled_prompt_embeds,
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
lora_scale = text_encoder_lora_scale,
clip_skip = self.clip_skip,
)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds_], dim=0).to(device)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_], dim=0).to(device)
# 3.1. Structure prompt embeddings
if structure_prompt is not None and structure_prompt != "":
(
structure_prompt_embeds,
negative_structure_prompt_embeds,
structure_pooled_prompt_embeds,
negative_structure_pooled_prompt_embeds,
) = self.encode_prompt(
prompt = structure_prompt,
prompt_2 = None, # prompt_2
device = device,
num_images_per_prompt = num_images_per_prompt,
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
negative_prompt = negative_prompt if structure_image is None else "",
negative_prompt_2 = None, # negative_prompt_2
prompt_embeds = structure_prompt_embeds,
negative_prompt_embeds = None, # negative_prompt_embeds
pooled_prompt_embeds = structure_pooled_prompt_embeds,
negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds
lora_scale = text_encoder_lora_scale,
clip_skip = self.clip_skip,
)
structure_prompt_embeds = torch.cat(
[negative_structure_prompt_embeds, structure_prompt_embeds], dim=0
).to(device)
structure_add_text_embeds = torch.cat(
[negative_structure_pooled_prompt_embeds, structure_pooled_prompt_embeds], dim=0
).to(device)
else:
structure_prompt_embeds = prompt_embeds
structure_add_text_embeds = add_text_embeds
# 3.2. Appearance prompt embeddings
if appearance_prompt is not None and appearance_prompt != "":
(
appearance_prompt_embeds,
negative_appearance_prompt_embeds,
appearance_pooled_prompt_embeds,
negative_appearance_pooled_prompt_embeds,
) = self.encode_prompt(
prompt = appearance_prompt,
prompt_2 = None, # prompt_2
device = device,
num_images_per_prompt = num_images_per_prompt,
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
negative_prompt = negative_prompt if appearance_image is None else "",
negative_prompt_2 = None, # negative_prompt_2
prompt_embeds = appearance_prompt_embeds,
negative_prompt_embeds = None, # negative_prompt_embeds
pooled_prompt_embeds = appearance_pooled_prompt_embeds, # pooled_prompt_embeds
negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds
lora_scale = text_encoder_lora_scale,
clip_skip = self.clip_skip,
)
appearance_prompt_embeds = torch.cat(
[negative_appearance_prompt_embeds, appearance_prompt_embeds], dim=0
).to(device)
appearance_add_text_embeds = torch.cat(
[negative_appearance_pooled_prompt_embeds, appearance_pooled_prompt_embeds], dim=0
).to(device)
else:
appearance_prompt_embeds = prompt_embeds
appearance_add_text_embeds = add_text_embeds
# 3.3. Prepare added time ids & embeddings, TODO: Support no CFG
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype = prompt_embeds.dtype,
text_encoder_projection_dim = text_encoder_projection_dim,
)
negative_add_time_ids = add_time_ids
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents, _ = self.prepare_latents(
None, batch_size, num_images_per_prompt, num_channels_latents, height, width,
prompt_embeds.dtype, device, generator, latents
)
if structure_image is not None:
structure_image = preprocess( # Center crop + resize
structure_image, self.image_processor, height=height, width=width, resize_mode="crop"
)
_, clean_structure_latents = self.prepare_latents(
structure_image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
prompt_embeds.dtype, device, generator, structure_latents,
)
else:
clean_structure_latents = None
structure_latents = latents if structure_latents is None else structure_latents
if appearance_image is not None:
appearance_image = preprocess( # Center crop + resize
appearance_image, self.image_processor, height=height, width=width, resize_mode="crop"
)
_, clean_appearance_latents = self.prepare_latents(
appearance_image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
prompt_embeds.dtype, device, generator, appearance_latents,
)
else:
clean_appearance_latents = None
appearance_latents = latents if appearance_latents is None else appearance_latents
# 6. Prepare extra step kwargs
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
if (
self.denoising_end is not None
and self.denoising_start is not None
and denoising_value_valid(self.denoising_end)
and denoising_value_valid(self.denoising_start)
and self.denoising_start >= self.denoising_end
):
raise ValueError(
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
+ f" {self.denoising_end} when using type float."
)
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
# 7.2 Optionally get guidance scale embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None: # TODO: Make guidance scale embedding work with batch_order
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 7.3 Get batch order
batch_order = deepcopy(BATCH_ORDER)
if structure_image is not None: # If image is provided, not generating, so no CFG needed
batch_order.remove("structure_uncond")
if appearance_image is not None:
batch_order.remove("appearance_uncond")
structure_control_stop_i, appearance_control_stop_i = get_last_control_i(control_schedule, num_inference_steps)
if self_recurrence_schedule is None:
self_recurrence_schedule = [0] * num_inference_steps
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if i == structure_control_stop_i: # If not generating structure/appearance, drop after last control
if "structure_uncond" not in batch_order:
batch_order.remove("structure_cond")
if i == appearance_control_stop_i:
if "appearance_uncond" not in batch_order:
batch_order.remove("appearance_cond")
register_attr(self, t=t.item(), do_control=True, batch_order=batch_order)
# TODO: For now, assume we are doing classifier-free guidance, support no CF-guidance later
latent_model_input = self.scheduler.scale_model_input(latents, t)
structure_latent_model_input = self.scheduler.scale_model_input(structure_latents, t)
appearance_latent_model_input = self.scheduler.scale_model_input(appearance_latents, t)
all_latent_model_input = {
"structure_uncond": structure_latent_model_input[0:1],
"appearance_uncond": appearance_latent_model_input[0:1],
"uncond": latent_model_input[0:1],
"structure_cond": structure_latent_model_input[0:1],
"appearance_cond": appearance_latent_model_input[0:1],
"cond": latent_model_input[0:1],
}
all_prompt_embeds = {
"structure_uncond": structure_prompt_embeds[0:1],
"appearance_uncond": appearance_prompt_embeds[0:1],
"uncond": prompt_embeds[0:1],
"structure_cond": structure_prompt_embeds[1:2],
"appearance_cond": appearance_prompt_embeds[1:2],
"cond": prompt_embeds[1:2],
}
all_add_text_embeds = {
"structure_uncond": structure_add_text_embeds[0:1],
"appearance_uncond": appearance_add_text_embeds[0:1],
"uncond": add_text_embeds[0:1],
"structure_cond": structure_add_text_embeds[1:2],
"appearance_cond": appearance_add_text_embeds[1:2],
"cond": add_text_embeds[1:2],
}
all_time_ids = {
"structure_uncond": add_time_ids[0:1],
"appearance_uncond": add_time_ids[0:1],
"uncond": add_time_ids[0:1],
"structure_cond": add_time_ids[1:2],
"appearance_cond": add_time_ids[1:2],
"cond": add_time_ids[1:2],
}
concat_latent_model_input = batch_dict_to_tensor(all_latent_model_input, batch_order)
concat_prompt_embeds = batch_dict_to_tensor(all_prompt_embeds, batch_order)
concat_add_text_embeds = batch_dict_to_tensor(all_add_text_embeds, batch_order)
concat_add_time_ids = batch_dict_to_tensor(all_time_ids, batch_order)
# Predict the noise residual
added_cond_kwargs = {"text_embeds": concat_add_text_embeds, "time_ids": concat_add_time_ids}
concat_noise_pred = self.unet(
concat_latent_model_input,
t,
encoder_hidden_states = concat_prompt_embeds,
timestep_cond = timestep_cond,
cross_attention_kwargs = self.cross_attention_kwargs,
added_cond_kwargs = added_cond_kwargs,
).sample
all_noise_pred = batch_tensor_to_dict(concat_noise_pred, batch_order)
# Classifier-free guidance, TODO: Support no CFG
noise_pred = all_noise_pred["uncond"] +\
self.guidance_scale * (all_noise_pred["cond"] - all_noise_pred["uncond"])
structure_noise_pred = all_noise_pred["structure_cond"]\
if "structure_cond" in batch_order else noise_pred
if "structure_uncond" in all_noise_pred:
structure_noise_pred = all_noise_pred["structure_uncond"] +\
self.structure_guidance_scale * (structure_noise_pred - all_noise_pred["structure_uncond"])
appearance_noise_pred = all_noise_pred["appearance_cond"]\
if "appearance_cond" in batch_order else noise_pred
if "appearance_uncond" in all_noise_pred:
appearance_noise_pred = all_noise_pred["appearance_uncond"] +\
self.appearance_guidance_scale * (appearance_noise_pred - all_noise_pred["appearance_uncond"])
if self.guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(
noise_pred, all_noise_pred["cond"], guidance_rescale=self.guidance_rescale
)
if "structure_uncond" in all_noise_pred:
structure_noise_pred = rescale_noise_cfg(
structure_noise_pred, all_noise_pred["structure_cond"],
guidance_rescale=self.guidance_rescale
)
if "appearance_uncond" in all_noise_pred:
appearance_noise_pred = rescale_noise_cfg(
appearance_noise_pred, all_noise_pred["appearance_cond"],
guidance_rescale=self.guidance_rescale
)
# Compute the previous noisy sample x_t -> x_t-1
concat_noise_pred = torch.cat(
[structure_noise_pred, appearance_noise_pred, noise_pred], dim=0,
)
concat_latents = torch.cat(
[structure_latents, appearance_latents, latents], dim=0,
)
structure_latents, appearance_latents, latents = self.scheduler.step(
concat_noise_pred, t, concat_latents, **extra_step_kwargs,
).prev_sample.chunk(3)
if clean_structure_latents is not None:
structure_latents = noise_prev(self.scheduler, t, clean_structure_latents)
if clean_appearance_latents is not None:
appearance_latents = noise_prev(self.scheduler, t, clean_appearance_latents)
# Self-recurrence
for _ in range(self_recurrence_schedule[i]):
if hasattr(self.scheduler, "_step_index"): # For fancier schedulers
self.scheduler._step_index -= 1 # TODO: Does this actually work?
t_prev = 0 if i + 1 >= num_inference_steps else timesteps[i + 1]
latents = noise_t2t(self.scheduler, t_prev, t, latents)
latent_model_input = torch.cat([latents] * 2)
register_attr(self, t=t.item(), do_control=False, batch_order=["uncond", "cond"])
# Predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred_uncond, noise_pred_ = self.unet(
latent_model_input,
t,
encoder_hidden_states = prompt_embeds,
timestep_cond = timestep_cond,
cross_attention_kwargs = self.cross_attention_kwargs,
added_cond_kwargs = added_cond_kwargs,
).sample.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_ - noise_pred_uncond)
if self.guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_, guidance_rescale=self.guidance_rescale)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# Callbacks
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# "Reconstruction"
if clean_structure_latents is not None:
structure_latents = clean_structure_latents
if clean_appearance_latents is not None:
appearance_latents = clean_appearance_latents
# For passing important information onto the refiner
self.refiner_args = {"latents": latents.detach(), "prompt": prompt, "negative_prompt": negative_prompt}
if not output_type == "latent":
# Make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
self.vae.to(torch.float32) # self.upcast_vae() is buggy
latents = latents.to(torch.float32)
structure_latents = structure_latents.to(torch.float32)
appearance_latents = appearance_latents.to(torch.float32)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
if decode_structure:
structure = self.vae.decode(structure_latents / self.vae.config.scaling_factor, return_dict=False)[0]
structure = self.image_processor.postprocess(structure, output_type=output_type)
else:
structure = structure_latents
if decode_appearance:
appearance = self.vae.decode(appearance_latents / self.vae.config.scaling_factor, return_dict=False)[0]
appearance = self.image_processor.postprocess(appearance, output_type=output_type)
else:
appearance = appearance_latents
# Cast back to fp16 if needed
if self.vae.config.force_upcast:
self.vae.to(dtype=torch.float16)
else:
return CtrlXStableDiffusionXLPipelineOutput(
images=latents, structures=structure_latents, appearances=appearance_latents
)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, structure, appearance)
return CtrlXStableDiffusionXLPipelineOutput(images=image, structures=structure, appearances=appearance)