import torch JPEG_QUALITY = 95 def exists(x): return x is not None def get(x, default): if exists(x): return x return default def get_self_recurrence_schedule(schedule, num_inference_steps): self_recurrence_schedule = [0] * num_inference_steps for schedule_current in reversed(schedule): if schedule_current is None or len(schedule_current) == 0: continue [start, end, repeat] = schedule_current start_i = round(num_inference_steps * start) end_i = round(num_inference_steps * end) for i in range(start_i, end_i): self_recurrence_schedule[i] = repeat return self_recurrence_schedule def batch_dict_to_tensor(batch_dict, batch_order): batch_tensor = [] for batch_type in batch_order: batch_tensor.append(batch_dict[batch_type]) batch_tensor = torch.cat(batch_tensor, dim=0) return batch_tensor def batch_tensor_to_dict(batch_tensor, batch_order): batch_tensor_chunk = batch_tensor.chunk(len(batch_order)) batch_dict = {} for i, batch_type in enumerate(batch_order): batch_dict[batch_type] = batch_tensor_chunk[i] return batch_dict def noise_prev(scheduler, timestep, x_0, noise=None): if scheduler.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if noise is None: noise = torch.randn_like(x_0).to(x_0) # From DDIMScheduler step function (hopefully this works) timestep_i = (scheduler.timesteps == timestep).nonzero(as_tuple=True)[0][0].item() if timestep_i + 1 >= scheduler.timesteps.shape[0]: # We are at t = 0 (ish) return x_0 prev_timestep = scheduler.timesteps[timestep_i + 1:timestep_i + 2] # Make sure t is not 0-dim x_t_prev = scheduler.add_noise(x_0, noise, prev_timestep) return x_t_prev def noise_t2t(scheduler, timestep, timestep_target, x_t, noise=None): assert timestep_target >= timestep if noise is None: noise = torch.randn_like(x_t).to(x_t) alphas_cumprod = scheduler.alphas_cumprod.to(device=x_t.device, dtype=x_t.dtype) timestep = timestep.to(torch.long) timestep_target = timestep_target.to(torch.long) alpha_prod_t = alphas_cumprod[timestep] alpha_prod_tt = alphas_cumprod[timestep_target] alpha_prod = alpha_prod_tt / alpha_prod_t sqrt_alpha_prod = (alpha_prod ** 0.5).flatten() while len(sqrt_alpha_prod.shape) < len(x_t.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = ((1 - alpha_prod) ** 0.5).flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(x_t.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) x_tt = sqrt_alpha_prod * x_t + sqrt_one_minus_alpha_prod * noise return x_tt