multimodalart HF staff commited on
Commit
35edaea
1 Parent(s): 47e464e

Minor change on the summary text

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -68,9 +68,9 @@ def count_files(*inputs):
68
  Training_Steps = file_counter*200*2
69
  else:
70
  Training_Steps = file_counter*200
71
- return([gr.update(visible=True), gr.update(visible=True, value=f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.<br>
72
- The setup, compression and uploading the model can take up to 20 minutes. As the T4-Small GPU costs US$0.60 for 1h, <b>the estimated cost for this training is <US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b><br>
73
- If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.''')])
74
 
75
  def train(*inputs):
76
  torch.cuda.empty_cache()
@@ -309,8 +309,7 @@ def check_status(top_description):
309
  ]
310
 
311
  def checkbox_swap(checkbox):
312
- reverse_bool = not checkbox
313
- return [gr.update(visible=reverse_bool), gr.update(visible=reverse_bool), gr.update(visible=reverse_bool)]
314
 
315
  with gr.Blocks(css=css) as demo:
316
  with gr.Box():
 
68
  Training_Steps = file_counter*200*2
69
  else:
70
  Training_Steps = file_counter*200
71
+ return([gr.update(visible=True), gr.update(visible=True, value=f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
72
+ The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
73
+ If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>''')])
74
 
75
  def train(*inputs):
76
  torch.cuda.empty_cache()
 
309
  ]
310
 
311
  def checkbox_swap(checkbox):
312
+ return [gr.update(visible=checkbox), gr.update(visible=checkbox), gr.update(visible=checkbox)]
 
313
 
314
  with gr.Blocks(css=css) as demo:
315
  with gr.Box():