multimodalart HF staff commited on
Commit
e89b310
·
1 Parent(s): 9110980

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -8
app.py CHANGED
@@ -39,7 +39,7 @@ model_to_load = model_v1
39
  with zipfile.ZipFile("mix.zip", 'r') as zip_ref:
40
  zip_ref.extractall(".")
41
 
42
- def swap_text(option):
43
  mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
44
  if(option == "object"):
45
  instance_prompt_example = "cttoy"
@@ -48,6 +48,7 @@ def swap_text(option):
48
  elif(option == "person"):
49
  instance_prompt_example = "julcto"
50
  freeze_for = 70
 
51
  return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for, gr.update(visible=True)]
52
  elif(option == "style"):
53
  instance_prompt_example = "trsldamrl"
@@ -74,6 +75,8 @@ def count_files(*inputs):
74
  file_counter+=len(files)
75
  uses_custom = inputs[-1]
76
  type_of_thing = inputs[-4]
 
 
77
  if(uses_custom):
78
  Training_Steps = int(inputs[-3])
79
  else:
@@ -83,9 +86,19 @@ def count_files(*inputs):
83
  elif(Training_Steps < 1400):
84
  Training_Steps=1400
85
  if(is_spaces):
86
- summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
87
- The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
88
- If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>'''
 
 
 
 
 
 
 
 
 
 
89
  else:
90
  summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps.<br><br>'''
91
 
@@ -548,7 +561,7 @@ with gr.Blocks(css=css) as demo:
548
  convert_button = gr.Button("Convert to CKPT", visible=False)
549
 
550
  #Swap the examples and the % of text encoder trained depending if it is an object, person or style
551
- type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder, thing_experimental], queue=False, show_progress=False)
552
 
553
  #Swap the base model
554
  base_model_to_use.change(fn=swap_base_model, inputs=base_model_to_use, outputs=[])
@@ -556,10 +569,10 @@ with gr.Blocks(css=css) as demo:
556
  #Update the summary box below the UI according to how many images are uploaded and whether users are using custom settings or not
557
  for file in file_collection:
558
  #file.change(fn=update_steps,inputs=file_collection, outputs=steps)
559
- file.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
560
 
561
- steps.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
562
- perc_txt_encoder.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
563
 
564
  #Give more options if the user wants to finish everything after training
565
  if(is_spaces):
 
39
  with zipfile.ZipFile("mix.zip", 'r') as zip_ref:
40
  zip_ref.extractall(".")
41
 
42
+ def swap_text(option, base):
43
  mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
44
  if(option == "object"):
45
  instance_prompt_example = "cttoy"
 
48
  elif(option == "person"):
49
  instance_prompt_example = "julcto"
50
  freeze_for = 70
51
+ show_prior_preservation = True if base != "v2-768" else False
52
  return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for, gr.update(visible=True)]
53
  elif(option == "style"):
54
  instance_prompt_example = "trsldamrl"
 
75
  file_counter+=len(files)
76
  uses_custom = inputs[-1]
77
  type_of_thing = inputs[-4]
78
+ seletected_model = inputs[-5]
79
+ experimental_faces = inputs[-6]
80
  if(uses_custom):
81
  Training_Steps = int(inputs[-3])
82
  else:
 
86
  elif(Training_Steps < 1400):
87
  Training_Steps=1400
88
  if(is_spaces):
89
+ if(seletected_model == "v1-5"):
90
+ its = 1.1
91
+ if(experimental_faces):
92
+ its = 1
93
+ elif(selected_model == "v2-512"):
94
+ its = 0.8
95
+ if(experimental_faces):
96
+ its = 0.7
97
+ elif(selected_model == "v2-768"):
98
+ its = 0.5
99
+ summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/its, 2)} seconds, or {round((Training_Steps/its)/60, 2)} minutes.
100
+ The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/its)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
101
+ If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>'''
102
  else:
103
  summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps.<br><br>'''
104
 
 
561
  convert_button = gr.Button("Convert to CKPT", visible=False)
562
 
563
  #Swap the examples and the % of text encoder trained depending if it is an object, person or style
564
+ type_of_thing.change(fn=swap_text, inputs=[type_of_thing, base_model_to_use], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder, thing_experimental], queue=False, show_progress=False)
565
 
566
  #Swap the base model
567
  base_model_to_use.change(fn=swap_base_model, inputs=base_model_to_use, outputs=[])
 
569
  #Update the summary box below the UI according to how many images are uploaded and whether users are using custom settings or not
570
  for file in file_collection:
571
  #file.change(fn=update_steps,inputs=file_collection, outputs=steps)
572
+ file.change(fn=count_files, inputs=file_collection+[thing_experimental]+[base_model_to_use]+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
573
 
574
+ steps.change(fn=count_files, inputs=file_collection+[thing_experimental]+[base_model_to_use]+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
575
+ perc_txt_encoder.change(fn=count_files, inputs=file_collection+[thing_exprerimental]+[base_model_to_use]+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
576
 
577
  #Give more options if the user wants to finish everything after training
578
  if(is_spaces):