File size: 17,083 Bytes
b888bcf
6a4b741
 
ad569d5
5715833
6db905d
f5d25ef
6a4b741
 
b888bcf
f424501
2f833d2
b6a8c7c
f5d25ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f53dc
fe52d88
f5f53dc
b888bcf
c4cd17d
2f833d2
c4cd17d
 
 
 
 
 
 
6db905d
09de898
2f833d2
 
b6a8c7c
 
c4cd17d
 
b888bcf
6a4b741
d06267b
 
 
 
ad569d5
 
2f833d2
 
 
ad569d5
 
 
 
 
 
2f833d2
 
 
 
 
b888bcf
b6a8c7c
 
 
 
f5d25ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6130cf9
560d75d
 
f5d25ef
3bef9b2
f5d25ef
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f53dc
231b814
f5f53dc
f5d25ef
 
 
 
 
b6a8c7c
e04dd59
f424501
6a4b741
 
 
6b7c1b1
b6a8c7c
 
 
 
 
 
 
d06267b
c4cd17d
d06267b
c4cd17d
09de898
5715833
d06267b
 
 
 
 
 
 
5715833
b6a8c7c
 
 
 
 
 
5715833
 
24d15b9
d06267b
 
 
 
 
 
5715833
 
6ba990e
d06267b
74395e4
 
 
 
 
 
 
6ba990e
74395e4
8fe2fce
 
 
 
be2828d
c4cd17d
be2828d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f329ae
 
 
c4cd17d
2c247b9
a8d5a97
2c247b9
6ba990e
9523e17
f5d25ef
 
 
 
d06267b
 
523ae5e
d06267b
 
 
 
 
f5d25ef
 
 
 
 
 
 
 
d06267b
 
 
 
 
 
b6a8c7c
 
c4cd17d
 
 
be2828d
 
c4cd17d
be2828d
2f833d2
 
e90abb5
be2828d
9cfde10
 
 
be2828d
aa6b3a7
3dccffc
94f5b13
aa6b3a7
 
 
 
 
 
 
856c9dc
a63aff9
 
1cdee36
00bfb1a
1cdee36
 
 
00bfb1a
eab7aad
 
f5f53dc
 
5fb94fd
 
 
 
 
be2828d
f5f53dc
 
 
 
2f833d2
 
f5d25ef
 
050c639
f5d25ef
be2828d
c03f146
 
be2828d
6a4b741
e04dd59
fe52d88
b888bcf
2f833d2
 
 
 
 
 
 
 
 
 
 
b6a8c7c
 
b888bcf
5715833
2f833d2
b6a8c7c
5715833
e12f05d
5715833
 
 
d51f6a9
cd63d48
eb191cf
fe52d88
eb191cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd63d48
90a23cf
d0b76c5
90a23cf
6397acd
 
 
 
5715833
 
 
6a4b741
 
32b0f65
26a0ac1
 
050c639
 
26a0ac1
 
 
 
 
2f833d2
 
 
 
 
 
b888bcf
2f833d2
d06267b
 
b888bcf
2f833d2
b888bcf
d06267b
 
 
 
 
 
 
560d75d
 
 
 
 
c4cd17d
5715833
d06267b
5715833
b888bcf
 
8fe2fce
 
 
 
c4cd17d
5715833
d06267b
5715833
b888bcf
b6a8c7c
 
8fe2fce
b6a8c7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler

import lora
import copy
import json
import gc
import random
from urllib.parse import quote
import gdown
import os

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
from controlnet_aux import ZoeDetector

from compel import Compel, ReturnedEmbeddingsType
from gradio_imageslider import ImageSlider

with open("sdxl_loras.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
            "downloads": item.get("downloads", 0),
            "is_nc": item.get("is_nc", False),
            "new": item.get("new", False),
        }
        for item in data
    ]

with open("defaults_data.json", "r") as file:
    lora_defaults = json.load(file)
    

device = "cuda" 

state_dicts = {}

for item in sdxl_loras_raw:
    saved_name = hf_hub_download(item["repo"], item["weights"])
    
    if not saved_name.endswith('.safetensors'):
        state_dict = torch.load(saved_name)
    else:
        state_dict = load_file(saved_name)
    
    state_dicts[item["repo"]] = {
        "saved_name": saved_name,
        "state_dict": state_dict
    }

sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True]

sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
    
# download models
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/config.json",
    local_dir="/data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/diffusion_pytorch_model.safetensors",
    local_dir="/data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
)
hf_hub_download(
    repo_id="latent-consistency/lcm-lora-sdxl",
    filename="pytorch_lora_weights.safetensors",
    local_dir="/data/checkpoints",
)
# download antelopev2
if not os.path.exists("/data/antelopev2.zip"):
    gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
    os.system("unzip /data/antelopev2.zip -d /data/models/")

app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
face_adapter = f'/data/checkpoints/ip-adapter.bin'
controlnet_path = f'/data/checkpoints/ControlNetModel'

# load IdentityNet
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
                                                                 vae=vae,
                                                                 controlnet=[identitynet, zoedepthnet],
                                                                 torch_dtype=torch.float16)

compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])

pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter_instantid(face_adapter)
pipe.set_ip_adapter_scale(0.8)
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
zoe.to("cuda")

original_pipe = copy.deepcopy(pipe)
pipe.to(device)

last_lora = ""
last_merged = False
last_fused = False
js = '''
var button = document.getElementById('button');
// Add a click event listener to the button
button.addEventListener('click', function() {
    element.classList.add('selected');
});
'''
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
    lora_repo = sdxl_loras[selected_state.index]["repo"]
    new_placeholder = "Type a prompt to use your selected LoRA"
    weight_name = sdxl_loras[selected_state.index]["weights"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"

    for lora_list in lora_defaults:
        if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
            face_strength = lora_list.get("face_strength", face_strength)
            image_strength = lora_list.get("image_strength", image_strength)
            weight = lora_list.get("weight", weight)
            depth_control_scale = lora_list.get("depth_control_scale", depth_control_scale)
            negative = lora_list.get("negative", negative)
    
    if(is_new):
        if(selected_state.index == 0):
            selected_state.index = -9999
        else:
            selected_state.index *= -1
    
    return (
        updated_text,
        gr.update(placeholder=new_placeholder),
        face_strength,
        image_strength,
        weight,
        depth_control_scale,
        negative,
        selected_state
    )

def center_crop_image_as_square(img):
    square_size = min(img.size)
    
    left = (img.width - square_size) / 2
    top = (img.height - square_size) / 2
    right = (img.width + square_size) / 2
    bottom = (img.height + square_size) / 2
    
    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped
    
def check_selected(selected_state):
    if not selected_state:
        raise gr.Error("You must select a LoRA")

def merge_incompatible_lora(full_path_lora, lora_scale):
    for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(multiplier)
                else:
                    multiplier = lora_scale

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.merge_to(
                    pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
                )
                del weights_sd
                del lora_model
                gc.collect()

def run_lora(images, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
    global last_lora, last_merged, last_fused, pipe
    face_image = images[0]
    face_image = center_crop_image_as_square(face_image)
    face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
    face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
    face_emb = face_info['embedding']
    face_kps = draw_kps(face_image, face_info['kps'])
    
    for lora_list in lora_defaults:
        if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
            prompt_full = lora_list.get("prompt", None)
            if(prompt_full):
                prompt = prompt_full.replace("<subject>", prompt)

    
    print("Prompt:", prompt)    
    #prepare face zoe
    with torch.no_grad():
        image_zoe = zoe(face_image)
    
    width, height = face_kps.size
    images = [face_kps, image_zoe.resize((height, width))]
    
    
    #if(selected_state.index < 0):
    #    if(selected_state.index == -9999):
    #        selected_state.index = 0
    #    else:
    #         selected_state.index *= -1
        #sdxl_loras = sdxl_loras_new
    print("Selected State: ", selected_state.index)
    print(sdxl_loras[selected_state.index]["repo"])
    if negative == "":
        negative = None

    if not selected_state:
        raise gr.Error("You must select a LoRA")
    repo_name = sdxl_loras[selected_state.index]["repo"]
    weight_name = sdxl_loras[selected_state.index]["weights"]
    
    full_path_lora = state_dicts[repo_name]["saved_name"]
    loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
    cross_attention_kwargs = None
    print("Last LoRA: ", last_lora)
    print("Current LoRA: ", repo_name)
    print("Last fused: ", last_fused)
    if last_lora != repo_name:
        if(last_fused):
            pipe.unfuse_lora()
        pipe.unload_lora_weights()
        pipe.load_lora_weights(loaded_state_dict)
        pipe.fuse_lora()
        last_fused = True
        is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
        if(is_pivotal):
            #Add the textual inversion embeddings from pivotal tuning models
            text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
            embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
            state_dict_embedding = load_file(embedding_path)
            print(state_dict_embedding)
            try:
                pipe.unload_textual_inversion()
                pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
                pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
            except:
                pipe.unload_textual_inversion()
                pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
                pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)

    conditioning, pooled = compel(prompt)
    if(negative):
        negative_conditioning, negative_pooled = compel(negative)
    else:
        negative_conditioning, negative_pooled = None, None
        
    image = pipe(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        negative_prompt_embeds=negative_conditioning,
        negative_pooled_prompt_embeds=negative_pooled,
        width=1024,
        height=1024,
        image_embeds=face_emb,
        image=face_image,
        strength=1-image_strength,
        control_image=images,
        num_inference_steps=20,
        guidance_scale = guidance_scale,
        controlnet_conditioning_scale=[face_strength, depth_control_scale],
    ).images[0]
    last_lora = repo_name
    gc.collect()
    return (face_image, image), gr.update(visible=True)

def shuffle_gallery(sdxl_loras):
    random.shuffle(sdxl_loras)
    return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras

def swap_gallery(order, sdxl_loras):
    if(order == "random"):
        return shuffle_gallery(sdxl_loras)
    else:
        sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
        return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery

def deselect():
  return gr.Gallery(selected_index=None)

with gr.Blocks(css="custom.css") as demo:
    gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
    gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new)
    title = gr.HTML(
        """<h1>Face to All</h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=2):
            with gr.Group(elem_id="gallery_box"):
                photo = ImageSlider(label="Upload a picture of yourself", interactive=True, type="pil")
                selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
                order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
                #new_gallery = gr.Gallery(
                #    label="New LoRAs",
                #    elem_id="gallery_new",
                #    columns=3,
                #    value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
                gallery = gr.Gallery(
                    #value=[(item["image"], item["title"]) for item in sdxl_loras],
                    label="Style gallery",
                    allow_preview=False,
                    columns=4,
                    elem_id="gallery",
                    show_share_button=False,
                    height=784
                )
        with gr.Column(scale=3):
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="A person", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")
            result = gr.Image(
                interactive=False, label="Generated Image", elem_id="result-image"
            )
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
                face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
                image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
                guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
                depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )
    order_gallery.change(
        fn=swap_gallery,
        inputs=[order_gallery, gr_sdxl_loras],
        outputs=[gallery, gr_sdxl_loras],
        queue=False
    )
    gallery.select(
        fn=update_selection,
        inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
        outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
        queue=False,
        show_progress=False
    )
    #new_gallery.select(
    #    fn=update_selection,
    #    inputs=[gr_sdxl_loras_new, gr.State(True)],
    #    outputs=[prompt_title, prompt, prompt, selected_state, gallery],
    #    queue=False,
    #    show_progress=False
    #)
    prompt.submit(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
        outputs=[result, share_group],
    )
    button.click(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
        outputs=[result, share_group],
    )
    share_button.click(None, [], [], js=share_js)
    demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js)
demo.queue(max_size=20)
demo.launch(share=True)